First measurement of A_N in ep scattering

Dept. Physics and Astronomy
University of Gent, Belgium

Alejandro López Ruiz on behalf of the HERMES Collaboration

A_N is a left-right asymmetry observed in the distribution of hadrons detected in inclusive measurements at proton-proton collisions. Large asymmetry values have been measured several times since the 70s at different center-of-mass energies \sqrt{s} for several hadron species [1]. Interpretation of these data led D.V. Sivers to formulate the mechanism carrying his name in the early 90s [2]. A_N is typically measured as a function of the transverse hadron momentum p_T and Feynman-x, defined as $x_F = 2p_T/x$ and related to the longitudinal hadron momentum.

Motivation: A_N in pp scattering

Two approaches have been proposed to explain such asymmetries, one based on the use of transverse-momentum-dependent distribution and fragmentation functions (TMDs) [3], the other related to high-twist quark-gluon correlations [4]. Both approaches provide a complementary picture of the spin structure of the proton, and predict that A_N goes to zero at low transverse hadron momentum. More data in this region, and as well at moderate-high p_T, are needed. These data can be also obtained from lepton-proton (ep) collisions, as now done at HERMES.

Why A_N in ep scattering

The measurement is equivalent to the existing ones in pp scattering, but in addition:

- It is a cleaner channel to access A_N as it involves only one quark channel from the proton target.
- It provides a test of the validity of the TMD factorization for processes with one large scale (p_T).
- It provides a link between the large inclusive asymmetries from purely hadronic interactions in pp collisions, and the large spin asymmetries measured in last years from semi-inclusive deep-inelastic scattering (SIDIS) data, where TMDs play a key role.
- Data already exist, collected at different facilities and HERMES has a lot of them!

The data were taken at the HERA accelerator (DESY) with the HERMES experiment using an unpolarized lepton beam and a fixed, transversely-polarized proton target and a forward spectrometer.

Theory predictions

Predictions from TMDs models estimate sizeable left-right asymmetries in inclusive hadron production off ep scattering based on the Sivers effect, and negligible for the Collins effect, based on previous HERMES data.

Connection to SIDIS results

Some good reasons suggest Sivers’ mechanism as responsible for the large values of A_N, like for example the correspondence, at moderate-low p_T, of the azimuthal angle ϕ with the angle modulating the Sivers term in SIDIS [3].

Experimental method

The asymmetry is experimentally accessible via the distributions in the azimuthal angle ϕ, defined between the hadron and the target spin vector.

The cross section of the process can be written as

$$\sigma = \sigma_{UU} + \sigma_{UT}$$

Only σ_{UT} depends on the transverse target spin $S_{T \perp}$

$$\sigma_{UT} = \sigma_{UU} \frac{A_{UT}^{\phi}}{A_{UT}^{\phi=0}} \sin(\phi)$$

The asymmetry was extracted as moments of $m_2(\phi)$ in bins of p_T and x_F. The $m_2(\phi)$ amplitudes do not depend on the acceptance of the detector and are related to A_N as

$$A_N = \frac{2}{N} \frac{m_2(\phi)}{m_2(\phi=0)}$$

Results

A_N was also extracted as a function of p_T for different bins of x_F. Positive mesons show a significant positive asymmetry, while for negative mesons, this is close to zero. This is in agreement with an asymmetry dominated by the Sivers mechanism. Further studies, not shown here, indicate that a simulation of the process based on the present understanding of TMDs (including e.g. the Sivers and Collins terms) manages to reproduce the measured inclusive asymmetries to a very good extent. The region of p_T between 1.5 and 2 GeV was also recently investigated, showing a significant rise of the asymmetries, particularly for positive pions. This is the region where the TMDs are correctly defined, while the low-p_T corresponds to the regime of quasi-real photoproduction.

© 2011 alepezu [at] mail.desy.de

Poster for the PANIC11 conference, MIT