MULTIDIMENSIONAL HADRON ATTENUATION

G. Karyan, I. Lehmann, B. Marianski (on behalf of the HERMES Collaboration)

 Dependence of R_3^A on v for positively charged hadrons for three slices in z (scale uncertainties are 3%, 5%, 4%, and 10% for π, K, p, and \bar{p} respectively).

![Diagram of semi-inclusive deep inelastic scattering.](image)

$$R_3^A(\nu, Q^2, x, p_t^2) = \frac{N^h(\nu, Q^2, x, p_t^2)}{N^l(\nu, Q^2, x, p_t^2)}$$ \hspace{1cm} (1)

- $N^h(\nu, Q^2, x, p_t^2)$ - number of semi-inclusive hadrons in a given (ν, Q^2, x, p_t^2) bin
- $N^l(\nu, Q^2)$ - number of inclusive deep inelastic scattered leptons in the same (ν, Q^2) bin
- $\nu = E - E'$ - energy of a virtual photon
- $Q^2 = -q^2 = -(k - k')^2$ - negative squared four momentum transfer
- p_t^2 - transverse momentum square of a hadron
- $x = \frac{2Et}{\nu}$ - energy fraction of a hadron
- e^+e^- beam of 27.6 GeV energy
- Nuclear targets: $^1D_{2.2}^6$Ne,12Kr,130Xe
- Good momentum resolution: $\Delta p/p < 2\%$
- Excellent particle identification capabilities

The HERMES spectrometer.

Particle Tracking System

Particle Identification System

 Dependence of R_3^A on p_t^2 for positively charged hadrons for three slices in z.

 Dependence of R_3^A on z for positively charged hadrons for three slices in the hadron’s transverse momentum.

 Dependence of R_3^A on z for negatively charged hadrons for three slices in the hadron’s transverse momentum.

- **Attenuation is larger for heavy nuclei**
- **Protons behave very differently from the other hadrons**

Momentum dependence of the Cherenkov angle for different hadron types and radiators. The upper band corresponds to aerogel and the lower band to C$_2$F$_{13}$ gas respectively.

- **Charge-separated π, K, p**
- **Separation of π, K and p in momentum range of 2 – 15 GeV**

- **Cronin effect suppressed at large z**
- **Less attenuation with larger ν and small z**