Multidimensional hadron attenuation

Gevorg Karyan* (on behalf of the HERMES collaboration)

*Yerevan Physics Institute, Yerevan, Armenia

- **Protons behave very differently from the other hadrons**
- **Semiconductor hadron electroproduction process**
 \[e + N \rightarrow e' + h + X \]
- **Nuclear targets** 2D$_{10}$ Ne, 84Kr
- **Good momentum resolution** ($\Delta p/p < 2\%$)
- **Excellent particle identification capabilities**

Figure 1: HERMES spectrometer

- **Particle Tracking System**
- **Particle Identification System**

Figure 2: Momentum dependence of the Cherenkov angle for different hadron types and radiators.**

- **Charge separated** for π, K, and p
- **Separation of π, K, and p in momentum range of $2 - 15$ GeV**

Figure 3: Diagram of semi-inclusive deep inelastic scattering.

\[R^h(x, Q^2, \nu, \nu') \rightarrow \frac{N^h(x, Q^2, \nu, \nu')}{N^h(x, Q^2, \nu, \nu')} \] \hspace{1cm} (1)

- **$N^h(x, Q^2, \nu, \nu')$** - number of semi-inclusive hadrons in a given (ν, Q^2, ν, ν') bin
- **$N^h(x, Q^2, \nu, \nu')$** - number of inclusive deep inelastic scattered leptons in the same (ν, Q^2) bin
- **$\nu = E - E'$** - energy of a virtual photon
- **$Q^2 = -q^2 = -(k - k')^2$** - negative squared four momentum transfer
- **p_T^2** - transverse momentum square of a hadron
- **$x = \frac{Q^2}{2E\nu}$** - energy fraction of a hadron

Figure 4: Dependence of R^h on ν for positively charged hadrons for three slices in z.

Figure 5: Dependence of R^h on ν for negatively charged hadrons for three slices in z.

Figure 6: Dependence of R^h on p_T for positively charged hadrons for three slices in z.

- **Cronin effect suppressed for large z**
- **Less attenuation with larger ν and small z**

* arXiv:1107.3496