HERMES highlights on the longitudinal-momentum structure of the nucleon

\[S_z = \frac{1}{2} \left(\frac{1}{2} \Delta x + \Delta G + L_x^2 + L_y^2 \right) \]

Experimental Prerequisites

Forward spectrometer
- Triangular beam configuration
- Photon identification
- Charged particle identification
- Magnetic spectrometer
- Cherenkov Shower Counter
- Detector: Hadron Calorimeter, Magnetic Spectrometer

Measurement with high accuracy
- Very clean reaction conditions

Measurement of Charge Asymmetry
- Longitudinally polarized 27.6 GeV electron/proton beam at HERA

Proton-deuteron multiplicity asymmetry
- Reflects different valence quark content
- Improved precision in determinations in the systematic uncertainty

LO prediction:
- Good agreement with CTEQ6+GS for \(p^+ \) and \(K^- \)
- CTEQ6-looser-performed well for \(p^- \)

Measurement of the Spin Asymmetry in the Photoproduction of Pairs of High-\(p_T \) Hadrons at HERMES
- Large \(p_T \) hadron pairs come from photon gluon fusion processes:
 - They carry information of the gluon spin

High-\(p_T \) hadron pairs:
- From HERA collider
- From photoproduction

Measured asymmetry:
- An incoherent superposition of different hard and soft subprocess asymmetries:
 \[A_{LL}^{\text{hadrons}}(p_T) = \sum_\text{processes} f_{LL} \cdot A_{LL}^\text{process} \]

Methodologies:
- Factorization
- Assumptions
- No change in \(s_{LL} \)
- No information on \(u/d \) content
- Cross-section at \(2\pi \)

Background:
- All other subprocesses

Main contributing process:
- Gluon-gluon quasi-elastic

H1 measurement:
- VME's (M1, M2)
- Longitudinally polarized quark production in deep-inelastic semi-inclusive scattering

Charged Kaon Multiplicities in LO
- Use data at 27.6 GeV
- Charged kaons from \(K^- \) and \(K^+ \)

Charge difference asymmetries
- Charge conjugation symmetry of fragmentation functions
- Leading order, leading twist, current fragmentation assumptions

Evolved to Q^2 = 2.5 GeV^2
- For \(u_L(x) \) CTEQ6 LO used

Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron
- Strange quarks carry no isospin, thus the same in proton and neutron
- Use vectorial probe and target to extract strange-quark distributions
- Only need inclusive asymmetries and \(K^- \) asymmetries, as well as \(K^-K^+ \) multiples on \(D \)
- Strange-quark fragmentation function either directly from data or from parameterizations

Proton-deuteron multiplicity asymmetry
- Reflects different valence quark content
- Improved precision in determinations in the systematic uncertainty

LO prediction:
- Good agreement with CTEQ6+GS for positive hadrons
- Better discrepancy for negative hadrons

3.3 Multiplicities
-Instead of cross section: no luminosity uncertainty

2.6.1 Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering on the proton and the deuteron

HERA/CTEQ6+Kretzer
- CTQ6+Kretzer
- \(\sigma \frac{d^2 \alpha}{d^2 \Delta} \) (\(x, Q^2 \))
- \(\frac{\sigma_{NN}^x}{\sigma_{NN}^x} \Rightarrow \frac{\sigma_{NN}^x}{\sigma_{NN}^x} \)
- \(\Delta S = 0.037 \pm 0.019 \pm 0.027 \)