Recent Results on TMDs from HERMES

20th Particles and Nuclei International Conference
25-29 August, 2014
Hamburg, Germany
Ami Rostomyan
(for the HERMES collaboration)
HERMES main research topics:
✓ origin of nucleon spin
 ◐ longitudinal spin/momentum structure
 ◐ transverse spin/momentum structure
✓ hadronization/fragmentation
HERMES main research topics:

✓ origin of nucleon spin
 ✔ longitudinal spin/momentum structure
 ✔ transverse spin/momentum structure

✓ hadronization/fragmentation

✔ nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents
 ➡ momentum: quarks carry ~ 50% of the proton momentum
 ➡ spin: total quark spin contribution only ~30%
 ➡ study of TMD DFs and GPDs
HERMES main research topics:

✓ origin of nucleon spin
 ⚫ longitudinal spin/momentum structure
 ⚫ transverse spin/momentum structure

✓ hadronization/fragmentation

✓ nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents
 ⚫ momentum: quarks carry ~ 50% of the proton momentum
 ⚫ spin: total quark spin contribution only ~30%
 ➡ study of TMD DFs and GPDs

✓ isolated quarks have never been observed in nature

✓ fragmentation functions were introduced to describe the hadronization
 ➰ non-pQCD objects
 ➰ universal but not well known functions
 ➡ advantage of lepton-nucleon scattering data ➔ flavour separation of fragmentation functions (FFs)
The HERMES experiment, located at HERA, with its pure gas targets and advanced particle identification (π, K, p) is well suited for TMD and GPD measurements and for studies of hadronisation process.

- **longitudinal** target polarization (H, D, 3He)
- **transverse** target polarization (H)
- **unpolarized** targets: H, D, 4He, 14N, 20Ne, 84Kr, 131Xe
- **unpolarized** H, D targets with **recoil detector**
\[d^6\sigma \propto \left\{ F_{UU} + \sqrt{2\epsilon(1 + \epsilon)} F_{UU}^{\cos \phi} \cos \phi + \epsilon F_{UU}^{\cos 2\phi} \cos 2\phi \right\} \\
+ \lambda_e \left\{ \sqrt{2\epsilon(1 - \epsilon)} F_{LU}^{\sin \phi} \sin \phi \right\} + S_\parallel \left\{ \ldots \right\} + S_\perp \left\{ \ldots \right\} \]
semi-inclusive DIS cross section and TMDs

\[\frac{d^6 \sigma}{dx \, dy \, dz \, dP_{h \perp}^2 \, d\phi \, d\phi_s} \propto \left\{ F_{UU} + \sqrt{2\epsilon(1 + \epsilon)} F_{UU}^{\cos \phi} \cos \phi + \epsilon F_{UU}^{\cos 2\phi} \cos 2\phi \right\}
+ \lambda_\epsilon \left\{ \sqrt{2\epsilon(1 - \epsilon)} F_{UL}^{\sin \phi} \sin \phi \right\} + S_{||} \left\{ \ldots \right\} + S_{\perp} \left\{ \ldots \right\} + \ldots \]

leading twist TMD DF:
parameterise the quark-flavour structure of the nucleon

Ami Rostomyan
semi-inclusive DIS cross section and TMDs

\[
\frac{d^6 \sigma}{dx \, dy \, dz \, dP_{h \perp}^2 \, d\phi \, d\phi_s} \propto \left\{ F_{UU} + \sqrt{2 \epsilon (1 + \epsilon)} F_{UU}^{\cos \phi} \cos \phi + \epsilon F_{UU}^{\cos 2\phi} \cos 2\phi \right\} + \lambda_e \left\{ \sqrt{2 \epsilon (1 - \epsilon)} F_{UL}^{\sin \phi} \sin \phi \right\} + S_{||} \left\{ \ldots \right\} + S_{\perp} \left\{ \ldots \right\} + \ldots
\]

leading twist TMD DF:
parameterise the quark-flavour structure of the nucleon

leading twist TMD FF:
number densities for the conversion of a quark of a certain type to a specific hadron

\[D_1^q(z, P_{h \perp}^2) \]

\[F_{UL}^q(z, P_{h \perp}^2) \]

\[H_1^q(z, P_{h \perp}^2) \]
leading twist TMD DF:
parameterise the quark-flavour structure of the nucleon

\[
\frac{d^6\sigma}{dx\,dy\,dz\,dP_{h\perp}^2\,d\phi\,d\phi_s} \propto \left\{ F_{UU} + \sqrt{2\epsilon(1+\epsilon)}F_{UU}^{\cos\phi}\cos\phi + \epsilon F_{UU}^{\cos 2\phi}\cos 2\phi \right\} \\
+ \lambda_e \left\{ \sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi \right\} + S_{||}\left\{ \ldots \right\} + S_{\perp}\left\{ \ldots \right\} + \ldots
\]

leading twist TMD FF:
number densities for the conversion of a quark of a certain type to a specific hadron

semi-inclusive DIS cross section and TMDs

HERMES: access to all TMDs thanks to the polarised beam and target
semi-inclusive DIS cross section and TMDs

\[\frac{d^6 \sigma}{dx \, dy \, dz \, dP_{h \perp}^2 \, d\phi \, d\phi_s} \]

\[\propto \left\{ F_{UU} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos \phi} \cos \phi + \epsilon F_{UU}^{\cos 2\phi} \cos 2\phi \right\} + \lambda e \left\{ \sqrt{2\epsilon(1-\epsilon)} F_{UL}^{\sin \phi} \sin \phi \right\} + S_{||} \left\{ \ldots \right\} + S_{\perp} \left\{ \ldots \right\} + \ldots \]

leading twist TMD DF:
parameterise the quark-flavour structure of the nucleon

leading twist TMD FF:
number densities for the conversion of a quark of a certain type to a specific hadron

HERMES: access to all TMDs thanks to the polarised beam and target
unpolarised quarks

\[\sigma_{UU} \propto f_1 \otimes D_1 \]

\[f_1 = \text{[Diagram]} \]
unpolarised quarks

\[\sigma_{UU} \propto f_1 \otimes D_1 \]

\[f_1 = \]

\[M^h = \frac{d\sigma^h_{SIDIS}(x, Q^2, z, P_{h\perp})}{d\sigma_{DIS}(x, Q^2)} \]
LO interpretation of multiplicity results (integrated over $P_{h\perp}$):

$$M^h \propto \frac{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2) D_{1q}^h(z, Q^2)}{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2)}$$

✓ charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process

$$\sigma_{UU} \propto f_1 \otimes D_1$$

$$f_1 =$$

$$M^h = \frac{d\sigma_{SIDIS}^h(x, Q^2, z, P_{h\perp})}{d\sigma_{DIS}(x, Q^2)}$$

unpolarised quarks
unpolarised quarks

LO interpretation of multiplicity results (integrated over $P_{h\perp}$):

$$M^h \propto \frac{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2) D_{1q}^h(z, Q^2)}{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2)}$$

✓ charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process

π^+ and K^+:
- favoured fragmentation on proton

π^-:
- increased number of d-quarks in D target and favoured fragmentation on neutron

K^-:
- cannot be produced through favoured fragmentation from the nucleon valence quarks

- HERMES Collaboration-
unpolarised quarks

\[\sigma_{UU} \propto f_1 \otimes D_1 \]

- HERMES Collaboration-

\[\sum \text{calculations using DSS, HNKS and Kretzer FF fits together with CTEQ6L PDFs} \]

proton:

- fair agreement for positive hadrons
- disagreement for negative hadrons

deuteron:

- results are in general in better agreement with the various predictions
unpolarised quarks

- HERMES Collaboration-

σ_{UU} \propto f_1 \otimes D_1

\checkmark calculations using FFs from HKNS and Kretzer FF fits together with CTEQ6L PDFs

proton:
 - fair agreement for positive hadrons
 - better agreement for negative hadrons

deuteron:
 - results are in general in better agreement with the various predictions

Ami Rostomyan
New global fit DSS+

new data sets since DSS

- Belle, BaBar, Compass, Hermes, Star, Alice

- Rodolfo Sassot -
 Workshop on FFs, Bloomington, December 2013

✓ better agreement for both π^+ and π^-
In the absence of experimental constraints, many global QCD fits of PDFs assume

\[s(x) = s(x) = r[\bar{u}(x) + \bar{d}(x)]/2 \]

- Evaluation of strange quark distribution

\[S(x) \int \mathcal{D}_S^K(z)dz \simeq Q(x) \left[5\frac{d^2N_K(x)}{d^2N_{DIS}(x)} - \int \mathcal{D}_Q^K(z)dz \right] \]

\[
S(x) = s(x) + s(x) \\
Q(x) = u(x) + \bar{u}(x) + d(x) + \bar{d}(x) \\
\mathcal{D}_S^K = D_1^{s\rightarrow K^+} + D_1^{s\rightarrow K^+} + D_1^{s\rightarrow K^-} + D_1^{s\rightarrow K^-} \\
\mathcal{D}_Q^K = D_1^{u\rightarrow K^+} + D_1^{d\rightarrow K^+} + D_1^{d\rightarrow K^+} + D_1^{d\rightarrow K^+} \ldots
\]

ACKNOWLEDGEMENTS

\(s(x) = \bar{s}(x) = r[\bar{u}(x) + \bar{d}(x)]/2 \)

- **HERMES Collaboration**
 - Phys. Rev. D89 (2014) 09710

\[S(x) \int D_S^K(z) dz \simeq Q(x) \left[\frac{5}{d^2 N^{DIS}(x)} - \int D_Q^K(z) dz \right] \]

\(S(x) = s(x) + \bar{s}(x) \)
\(Q(x) = u(x) + \bar{u}(x) + d(x) + \bar{d}(x) \)
\[D_S^K = D_1^{s \rightarrow K^+} + D_1^{i \rightarrow K^+} + D_1^{s \rightarrow K^-} + D_1^{i \rightarrow K^-} \]
\[D_Q^K = D_1^{u \rightarrow K^+} + D_1^{i \rightarrow K^+} + D_1^{d \rightarrow K^+} + D_1^{d \rightarrow K^+} + \ldots \]

\(\langle Q^2 \rangle = 2.5 \text{ GeV}^2 \)

\[\Delta \text{ HERMES with } \int D_S^K(z, Q^2) dz = 1.27 \]

- **Fit**
- **CTEQ6L**
- **CTEQ6.5S-0**
- **NNPDF2.3**

\(xS(x) \)

\(0.02 \) \(0.1 \) \(0.6 \)

\(0 \) \(0.2 \) \(0.4 \)

Ami Rostomyan

\(\sqrt{ } \text{ PANIC 2014} \)

- **true** in the absence of experimental constraints, many global QCD fits of PDFs assume

- **true** isoscalar extraction of \(S(x)D_S^K \) based on the multiplicity data of K\(^+\) and K\(^-\) on D

true the distribution of S(x) is obtained for a certain value of \(D_S^K \)

true the normalization of the data is given by that value

true whatever the normalization, the shape is incompatible with the predictions
✓ multi-dimensional analysis allows exploration of new kinematic dependences
✓ broader $P_{h\perp}$ distribution for K^-

- HERMES Collaboration-

beyond the collinear factorisation
flavour-dependent and independent anzatsets

\[P_T = z \mathbf{k}_\perp + \mathbf{p}_\perp \]

\[f_{q/p}(x, \mathbf{k}_\perp) = f_{q/p}(x) \frac{e^{-k_z^2/\langle k_z^2 \rangle}}{\pi \langle k_z^2 \rangle} \]

\[D_{h/q}(z, \mathbf{p}_\perp) = D_{h/q}(z) \frac{e^{-p_z^2/\langle p_z^2 \rangle}}{\pi \langle p_z^2 \rangle} \]

\[\langle P_{hT,a}^2 \rangle = z^2 \langle k_z^2, a \rangle + \langle P_{\perp, a \rightarrow h}^2 \rangle \]

- different widths for the Gaussian forms of the valence and sea TMD PDFs
- four different Gaussian shapes for TMD FFs

A. Signori, A. Bacchetta, M. Radici and G. Schnell (JHEP, 2013)
no fit on K data:

- the precision and accuracy of the kaon data do not help in constraining the values of the fit parameters.

\[\langle p_{\perp}^2, \text{fav} \rangle < \langle p_{\perp}^2, \text{unf} \rangle \sim \langle p_{\perp}^2, uK \rangle \]
\[\langle k_{\perp}^2, d_v \rangle < \langle k_{\perp}^2, u_v \rangle < \langle k_{\perp}^2, \text{sea} \rangle \]

\[\langle k_{\perp}^2 \rangle = 0.57 \pm 0.08 \text{ GeV}^2, \quad \langle p_{\perp}^2 \rangle = 0.12 \pm 0.01 \text{ GeV}^2 \]

Ami Rostomyan
quarks’ transverse degrees of freedom

Cahn effect

kinematic effect caused by quark intrinsic transverse momentum.

Boer-Mulders effect

correlation between quark transverse momentum and quark transverse spin.

\[
F_{UU}^{\cos 2\phi} = C \left[-\frac{2(\hat{h} \cdot \vec{k}_T)(\hat{h} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} \right]
\]

\[
F_{UU}^{\cos \phi} = \frac{2M}{Q} C \left[-\frac{\hat{h} \cdot \vec{p}_T}{M_h} \ x \ h_1^\perp H_1^\perp - \frac{\hat{h} \cdot \vec{k}_T}{M} \ x \ f_1 D_1 + \ldots \right]
\]
quarks’ transverse degrees of freedom

\[\sigma_{UU} \propto h_1^\perp \otimes H_1^\perp \]

\[h_1^\perp = \]

\[= \]
negative asymmetry for π^+ and positive for π^-

$H_{1}^{\perp, u \to \pi^+} = -H_{1}^{\perp, u \to \pi^-}$

data support Boer-Mulders DF h_{1}^{\perp} of same sign for u and d quarks

K^- and K^+: striking differences w.r.t. pions

role of the sea in DF and FF
negative asymmetries for π^+ and π
- larger effect at high z
- larger magnitude for π^+

negative asymmetries for K^+
- even larger amplitudes in magnitude than those for π^+
- suggest a large contribution from the Boer–Mulders effect

compatible with zero asymmetries for K^-

- HERMES Collaboration-
\[d\sigma = d\sigma^0_{UU} + \cos(2\phi)d\sigma^1_{UU} + \frac{1}{Q} \cos(\phi)d\sigma^2_{UU} + P_l \frac{1}{Q} \sin(\phi)d\sigma^3_{LU} \]
\[+ \quad S_L \left[\sin(2\phi)d\sigma^4_{UL} + \frac{1}{Q} \sin(\phi)d\sigma^5_{UL} \right] + P_l \left(d\sigma^6_{LL} + \frac{1}{Q} \sin(\phi)d\sigma^7_{LL} \right) \]
\[+ \quad S_T \left[\sin(\phi - \phi_s)d\sigma^8_{UT} + \sin(\phi + \phi_s)d\sigma^9_{UT} + \sin(3\phi - \phi_s)d\sigma^{10}_{UT} + \frac{1}{Q} \sin(2\phi - \phi_s)d\sigma^{11}_{UT} + \frac{1}{Q} \sin(\phi_s)d\sigma^{12}_{UL} \right] \]
\[+ P_l \left(\cos(\phi - \phi_s)d\sigma^{13}_{LT} + \frac{1}{Q} \cos(\phi_s)d\sigma^{14}_{LT} + \frac{1}{Q} \cos(2\phi - \phi_s)d\sigma^{15}_{LT} \right) \]
\[d\sigma = d\sigma_U^0 + \cos(2\phi)d\sigma_U^1 + \frac{1}{Q} \cos(\phi)d\sigma_U^2 + P_L \left(d\sigma_L^3 + \frac{1}{Q} \sin(\phi)d\sigma_L^4 \right) \]

+ SL \left[\sin(2\phi)d\sigma_L^4 + \frac{1}{Q} \sin(\phi)d\sigma_L^5 \right] + P_L \left(d\sigma_L^6 + \frac{1}{Q} \sin(\phi)d\sigma_L^7 \right) \]

+ ST \left[\sin(\phi - \phi_s)d\sigma_T^8 + \sin(\phi + \phi_s)d\sigma_T^9 + \sin(3\phi - \phi_s)d\sigma_T^{10} + \frac{1}{Q} \sin(2\phi - \phi_s)d\sigma_T^{11} + \frac{1}{Q} \sin(\phi_s)d\sigma_T^{12} \right] \]

+ P_L \left(\cos(\phi - \phi_s)d\sigma_T^{13} + \frac{1}{Q} \cos(\phi_s)d\sigma_T^{14} + \frac{1}{Q} \cos(2\phi - \phi_s)d\sigma_T^{15} \right) \]