Recent HERMES results from inclusive and semi-inclusive hadron production with a transversely polarised target

Charlotte Van Hulse, on behalf of the HERMES collaboration
University of the Basque Country - Spain

Transversity 2014, Chia, Sardinia
09-13 June, 2014
Outline

• Dihadron ($\pi\pi$ and KK) production in TMD semi-inclusive DIS on a transversely polarized proton target

• Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

• Transverse polarization of Λ hyperons from quasi-real photoproduction on nuclei
Dihadron production in semi-inclusive DIS
Dihadron production

\[\vec{R} = \frac{1}{2}(\vec{P}_1 - \vec{P}_2) \]
\[\vec{P}_h = \vec{P}_1 + \vec{P}_2 \]
\[\vec{R}_T = \vec{R} - \frac{\vec{R} \cdot \vec{P}_h}{|\vec{P}_h|^2} \vec{P}_h \]

\[\phi_R = \text{signum}[(\vec{n} \times \vec{R}_T) \cdot \vec{P}_h] \arccos \frac{\vec{n} \cdot \vec{R}_T}{|\vec{n}| |\vec{R}_T|}, \]

with \(\vec{n} \perp \vec{P}_h \) and \((\vec{P}_h \times \vec{n}) \cdot (\vec{q} \times \vec{k}) > 0 \)

\(x, y, z, P_{h\perp} \)
\(\phi_h, \phi_R \)

dihadron mass \(M_{hh} \)
New convention for (di)hadron fragmentation functions (*)

- new convention for FFs:
 - FFs entirely defined by quark spin χ, χ'
 - final-state polarisation of (di-)hadrons $|l_1, m_1>, |l_2, m_2>$ contained in partial-wave expansion

- exactly 2 FFs:
 - unpolarised FF D_1 with $\chi=\chi'$
 - polarised (Collins) FF H_1^\perp with $\chi \neq \chi$

Partial-wave expansion

- direct sum base $|l, m>$ rather than direct product base $|l_1, m_1>, |l_2, m_2$

\[
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \left(\frac{1}{2} \otimes \frac{1}{2} \right) \otimes \left(\frac{1}{2} \otimes \frac{1}{2} \right) = (1 \oplus 0) \otimes (1 \oplus 0),
\]

\[
= 2 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0.
\]

experimentally

- partial wave

\[
D_1 = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos \vartheta) e^{im(\phi_R-\phi_k)} D_1^{\ell,m}(z, M_h, |k_T|),
\]

\[
H_1^\perp = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos \vartheta) e^{im(\phi_R-\phi_k)} H_1^{\perp \ell,m}(z, M_h, |k_T|)
\]
Cross section

\[d\sigma_{UT} = \frac{\alpha^2 M_h P_{h\perp}}{2\pi xy Q^2} \left(1 + \frac{\gamma^2}{2x}\right) |S_\perp| \]

\[
\times \sum_{\ell=0}^{2} \sum_{m=-\ell}^{\ell} \left\{ A(x, y) \left[P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S) \right] \right.
\times \left(F_{UT,T}^{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S) + \epsilon F_{UT,L}^{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S) \right) \right.
\]

\[
+ B(x, y) \left[P_{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S) F_{UT}^{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S) \right] \right.
\]

\[
+ P_{\ell,m} \sin((3-m)\phi_h + m\phi_R - \phi_S) F_{UT}^{\ell,m} \sin((3-m)\phi_h + m\phi_R - \phi_S) \right\} \right. \}

\text{and analogously for } d\sigma_{UU}, d\sigma_{UL}, d\sigma_{LU}, d\sigma_{LL}, d\sigma_{LT}
Structure functions at leading twist

\[F_{UT,L}^{p, m \sin((m+1)\phi_h - m\phi_R - \phi_S)} = 0 \]

\[F_{UT,T}^{p, m \sin((m+1)\phi_h - m\phi_R - \phi_S)} = -\mathcal{I} \left[\frac{|p_T|}{M} \cos((m+1)\phi_h - \phi_p - m\phi_k) \right. \]
\[\times \left(f_{1T}^{\perp} D_1^{\ell,m} + \text{signum}[m] g_{1T} D_1^{\ell,m} \right) \],

\[F_{UT}^{p, (1-m)\phi_h + m\phi_R + \phi_S} = -\mathcal{I} \left[\frac{|k_T|}{M_h} \cos((m-1)\phi_h - \phi_p - m\phi_k) h_1 H_1^{\perp,\ell,m} \right], \]

\[F_{UT}^{p, (3-m)\phi_h + m\phi_R - \phi_S} = \mathcal{I} \left[\frac{|p_T|^2 |k_T|}{M^2 M_h} \cos((m-3)\phi_h + 2\phi_p - (m-1)\phi_k) \right. \]
\[\times \left. h_{1T}^{\perp} H_1^{\perp,\ell,m} \right] . \]

"Sivers"

"Collins"

"pretzelocity"

usual IFF related to \(H_1^{\perp,1,1} \)

\(\vec{p}_T, \phi_p \) struck quark

\(\vec{k}_T, \phi_k \) fragmenting quark
Results

- Collins moments for $\pi^+\pi^-, \pi^+\pi^0, \pi^-\pi^0$
- Collins and Sivers moments for K^+K^- in ϕ resonance region
- Collins, Sivers and pretzelosity for $|0, 0>$ moments for K^+K^- outside ϕ resonance region since $l > 0, m > 0$ are zero (as expected)
$|1, 1 >$ Collins moments for $\pi\pi$

allows collinear access to transversity
Collins moments for $\pi\pi$
$|2, \pm 2 > \textbf{Collins moments for } \pi\pi$

$|2, \pm 2 >= |1, \pm 1 > |1 \pm 1 >$

\[\begin{align*}
A_{UT}^{(2, \pm 2)} & \quad \text{HERMES Preliminary} \\
\text{\bullet } \pi^+\pi^0 & \quad \text{\triangle } \pi^+\pi^- & \quad \text{\square } \pi^-\pi^0
\end{align*} \]

$|2, -2 >$

consistent with zero

$|2, +2 >$

- no signal outside resonance region
- hint of negative signal for $\pi^\pm\pi^0$ in ρ^\pm region
- no signal in ρ^0 region
Collins moments for $K K^{-}$ in ϕ resonance region

sensitive to transversity s-quark distribution

no indication for different signal in and outside ϕ-resonance region
Sivers moments for $K K^-$ in ϕ resonance region

no indication for different signal in and outside ϕ-resonance region
Moments for $K^+K^-K^+K^-$ outside ϕ resonance region @ leading twist

- consistent with small positive value

\[A_{LT} \]

\[\sin(\theta_{LT}) \]

HERMES Preliminary

7.3% Scale Uncertainty

\[e^+ p' \to e^+ K^+K^- X \]

\[\cos(\theta_{LT}) \]

\[7.3\% \text{ Scale Uncertainty} \]
Moments for $K K$ outside ϕ resonance region @ leading twist

• consistent with zero
Moments for $K K$ outside ϕ resonance region @ sub-leading twist

- consistent with zero
A_{UT} inclusive
Transverse target single-spin asymmetry in inclusive electroproduction of pions and kaons

- various polarized pp scattering experiments consistently observe since 35 years large A_N asymmetries, with \sqrt{s} from 5 to 200 GeV

- not interpretable in leading-twist based on collinear factorisation
Transverse target single-spin asymmetry in inclusive electroproduction of pions and kaons

- various polarized pp scattering experiments consistently observe since 35 years large A_N asymmetries, with \sqrt{s} from 5 to 200 GeV

- not interpretable in leading-twist based on collinear factorisation

- HERMES measurement of inclusive transverse target spin asymmetry $A_{UT}^{\sin(\psi)}$:

$$d\sigma = d\sigma_{UU}[1 + s_\perp A_{UT}^{\sin(\psi)} \sin(\psi)]$$

- $A_{UT}^{\sin(\psi)} = \frac{\pi}{2} A_N$

- @ HERMES

$$\sin(\psi) \sim \sin(\phi - \phi_S)$$
Results: x_F dependence

$x_F = 2P_L/\sqrt{s}$

π^+
- positive, increase linearly with x_F

π^-
- negative, decrease linearly with x_F

x_F behavior of pions similar to what observed in hadron-hadron collisions

K^+
- positive, \simconstant with x_F

K^-
- compatible with zero, with small variations over x_F
Results: disentangle x_F and P_T dependence

π^+
- increase with P_T up to $P_T \approx 0.8 \text{ GeV}$
- P_T dependence independent of x_F
- x_F increase from P_T dependence

π^-
- small amplitudes,
 varyingly positive and negative with P_T
- decrease with increasing x_F
Results: disentangle x_F and P_T dependence

K^+
- increase with P_T up to $P_T \approx 0.8$ GeV
- increase with increasing x_F

K^-
- small amplitudes
- decrease with increasing x_F
Contribution of various sub-samples

3 sub samples:

- anti-tagged: no e^\pm detected (mostly $Q^2 \approx 0$)
- DIS with $0.2 < z < 0.7$
- DIS with $z > 0.7$

- anti-tagged results ~ overall results, majority of statistics
- $0.2 < z < 0.7$ results: similar to Sivers amplitudes
- $z > 0.7$ results: large asymmetries
Transverse Λ polarization in inclusive measurement
Figure 1: $pp \rightarrow \Lambda^\uparrow X$

Figure 4: $p_p \rightarrow \Lambda^\uparrow X$

$\sqrt{s} = 62$ GeV corresponds Λ^\uparrow production.

Λ^\uparrow production at $1 \text{ GeV}/c$.

Λ^\uparrow production at $1 \text{ GeV}/c$.
\(pp \rightarrow \Lambda^\uparrow X\)

\(ep \rightarrow \Lambda^\uparrow X\)

- in SIDIS (large \(Q^2\)) proportional to polarizing FF \(D_{1T}^{\perp}\) (naive T-odd, chiral even)
- in twist-3 factorization, opposite sign to \(pp\)

[Y. Koike, hep-ph/0210434]
the other inclusive SSA

• clearly positive for light target nuclei
• consistent with zero for heavy targets

[HERMES, arXiv:1406.3236]
the other inclusive SSA

[HERMES, arXiv:1406.3236]

- larger in backward direction w.r.t. incoming lepton

- consistent with x_F dependence of twist-3 calculation (opposite sign conventions for x_F!)

$\zeta \equiv (E_\Lambda + p_{z\Lambda})/(E_e + p_e)$
the other inclusive SSA

• larger in backward direction w.r.t. incoming lepton

• distinct p_T dependences in forward and backward directions: rising with p_T in backward direction as in pp
Summary

- SIDIS dihadron moments (in new partial wave expansion) provide potentially rich information on various distribution and fragmentation functions.

- Inclusive A_{UT} provides information that can contribute to understanding of A_N in pp data.

- Inclusive production of Λ in ep can provide complementary information to pp data on the mechanism to generate Λ polarization.