Charged Hadron Production at HERMES

Inti Lehmann
Facility for Antiproton and Ion Research – FAIR
University of Glasgow
for the HERMES Collaboration
Baryons2013, Glasgow, 27/06/2013
Experimental Method

- **Semi-Inclusive Deep Inelastic Scattering (SIDIS)**
 - Access parton fragmentation functions

\[
d\sigma^h = \sum q \otimes d\sigma_f \otimes D^h_f
\]
Experimental Method

- Semi-Inclusive Deep Inelastic Scattering (SIDIS)
 - Access parton fragmentation functions

\[
d\sigma^h = \sum q \otimes d\sigma_f \otimes D^h_f
\]

\[
\nu = E_e - E_{e'}
\]

\[
Q^2 = -q^2
\]

\[
x_B = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M \cdot \nu}
\]

\[
p_t = P_{h\perp}
\]

\[
z = \frac{E_h}{\nu}
\]
Measurements on Nucleons

- Compare yields of positively and negatively charged pions and kaons on
 - the proton
 - the deuteron (accessing neutron contrib.)
- Probe flavour dependence of fragmentation
- Probe fragmentation functions at low energy scales
 - in contrast to lepton annihilation
- Differentiate between quark and antiquark contributions
- Improve QCD fits to extract fragmentation functions
- Observable: hadron multiplicity

\[
M^n_h(x_B, Q^2, z, P_{h\perp}) = \frac{1}{d^2 N_{DIS}(x_B, Q^2)} \cdot \int_0^{2\pi} \frac{d^5 N^h(x_B, Q^2, z, P_{h\perp}, \phi_h)}{dx_B dQ^2 d\phi} d\phi_h
\]

\[
= \frac{1}{d^2 \sigma_{DIS}(x_B, Q^2)} \cdot \int_0^{2\pi} \frac{d^5 \sigma^h(x_B, Q^2, z, P_{h\perp}, \phi_h)}{dx_B dQ^2 d\phi} d\phi_h.
\]
Measurements on Nuclei

• Initial reaction identical to nucleon SIDIS
• Final state influenced by nuclear matter

• Compare several nuclei
• Information on final state interaction
Hadronisation in Matter

• Schematic evolution in space and time
• Parton propagation
 ▪ Gluon radiation
 ▪ Partonic rescattering
 ▪ length $< l_c$
• Pre-hadron propagation
 ▪ Quantum numbers of h
 ▪ Colourless but off shell
• Hadron formation
 ▪ Formation length l_f up to 10fm (outside N)
Experimental Observable

- Hadron multiplicity ratio on nuclei
 - comparing nucleus A with deuterium D

 \[R^h_A(\nu, Q^2, z, p_t^2) = \left(\frac{N^h(\nu, Q^2, z, p_t^2)}{N^e(\nu, Q^2)} \right) \frac{A}{D} \left(\frac{N^h(\nu, Q^2, z, p_t^2)}{N^e(\nu, Q^2)} \right) \]

 - Exp. systematics cancel largely
 - Partonic and hadronic effects contribute

Inti Lehmann

HERMES Hadr, Baryons 2013, Glasgow
• Long. polarized electron/positron beams 27.6 GeV
HERMES Spectrometer

Magnetic spectrometer with transv. and long. polarized targets

Inti Lehmann
HERMES Hadr, Baryons2013, Glasgow

27.6 GeV
Multiplicities on Nucleons

- HERMES publication
 - π^+, π^-
 - K^+, K^-
 - On proton, deuteron
 - With, without vector meson contribution
 - $\rho^0 \to \pi^+\pi^-$
 - $\phi \to K^+K^-$
 - Function of
 - x_B, Q^2, z, $P_{h\perp}$

- Phys. Rev. D87 (2013) 074029
- http://www-hermes.desy.de/multiplicities

134 distributions online
• In the following
 ▪ vector-meson corrected
• Differences
 ▪ proton, deuteron
 ▪ explained by favoured or unfavoured fragmentation due to quark content
Multiplicity on Nucleons

x_B and Q^2 dependencies more flat, as expected
• Comparison with LO calculations
 ▪ collinear factorisation, ie integration over $P_{h\perp}$
 ▪ discrepancies apparent

Multiplicity on Nucleons
First Ratios on Nuclei

- Multiplicity ratio
 \[R_A^h(\nu, Q^2, z, p_t^2) \]
 - 1 dim. dependence
- A dependence
 - compatible with \(A^{2/3} \)

2D Ratios on Nuclei

- Recent HERMES publication
- 2D dependences extracted
 - variables:
 \[\nu \ z \ p_t \ Q^2 \]

Over 100 distributions online
Durham: http://durpdg.dur.ac.uk or
http://inspirehep.net/record/918944/files/

- avoids integration
- disentangles dependence
- \(\nu \) dependence in \(z \) slices
 - substructures observed
 - \(\pi^+ \) and \(K^+ \) similar
 - protons pronounced differences for different \(z \)

2D Ratios on Nuclei

- p_t^2 dep. in z slices
 - Nuclear broadening – Cronin effect
 - Disappears for high z
 - Compatible for negative hadrons

2D Ratios on Nuclei

- **z dep. in p_t^2 slices**
 - z-dependence increases with p_t
 - p_t dependence disappears at high z

Summary

• Semi-Inclusive Deep Inelastic Scattering (SIDIS)
 ▪ Nucleon: fragmentation functions
 ▪ Nucleus: parton propagation + hadronisation

• HERMES Results
 ▪ Fragmentation functions at low energies
 ▪ Probe flavour dependence
 ▪ Discriminate quark and antiquark contribution
 ▪ Improve QCD fits
 ▪ Strong nuclear effects on multiplicity ratio
 ▪ Two-dim. correlations (some unexpected)
 ▪ All dependencies published in databases
Multiplicity on Nucleons

\[\frac{1}{N_{DIS}(Q^2)} \frac{dN^h(z,Q^2)}{dz} = \sum_f e_f^2 \int_0^1 q_f(x_B,Q^2) dx_B D_f^\pi(z,Q^2) \]

\[\sum_f e_f^2 \int_0^1 q_f(x_B,Q^2) dx_B D_f^\pi(z,Q^2) \]

\[\frac{1}{N_{DIS}(Q^2)} \frac{dN^h(z,Q^2)}{dz} \]

\[\sum_f e_f^2 \int_0^1 q_f(x_B,Q^2) dx_B D_f^\pi(z,Q^2) \]

\[\frac{1}{N_{DIS}(Q^2)} \frac{dN^h(z,Q^2)}{dz} \]

\[\sum_f e_f^2 \int_0^1 q_f(x_B,Q^2) dx_B D_f^\pi(z,Q^2) \]

\[\frac{1}{N_{DIS}(Q^2)} \frac{dN^h(z,Q^2)}{dz} \]

\[\sum_f e_f^2 \int_0^1 q_f(x_B,Q^2) dx_B D_f^\pi(z,Q^2) \]
2D Ratios on Nuclei

\[R_A^h \]

<table>
<thead>
<tr>
<th>Ne</th>
<th>Kr</th>
<th>Xe</th>
</tr>
</thead>
</table>

\[\pi^+ \]

\[\pi^- \]

\[K^+ \]

\[K^- \]

\[p \]

\[v \ [GeV] \]

\[z = 0.2-0.4 \]
\[z = 0.4-0.7 \]
\[z > 0.7 \]

\[\pi^+ \text{ and } \pi^- \text{ similar while } K^- \text{ differ} \]