Beam-Spin Asymmetries in SIDIS at HERMES

BARYONS 2013, UK, Glasgow

Vitaly Zagrebelnyy (vitalzag@mail.desy.de)
On behalf of the HERMES collaboration
Investigating spin structure of nucleon

- Spin crisis
- Longitudinal and transverse momentum nucleon structure
- Large SSA in pion production
- Quark transverse momentum role

\[\sum \Delta q \]

\[L_q \]

\[L_g \]

\[\Delta G \]

DESY HERMES V. Zagrebelnyy

25.06.2013
TMD approach

inclusive DIS
integrated DFs

\[\xi = 0, t = 0 \]

\[\int d^2 k_T \]

semi-inclusive DIS

GPDs

\[\int d^2 k_T dr_\parallel \]

TMDs

\[\int d^3 r \]

theory

W(p,x) Wigner distribution
Can not be measured due to:

\[\Delta p \Delta x \geq \frac{\hbar}{2} \]

\[q(x, r_\perp, \vec{S}, \vec{\bar{s}}, Q^2) \]

\[q(x, k_\perp, \vec{S}, \vec{\bar{s}}, Q^2) \]
SIDIS cross section

\[e^+ p \rightarrow e^+ h^{+/-} X \]

(inclusive) \hspace{1cm} (semi-inclusive)

\[f_1(x) \hspace{1cm} f_1(x, p_T) \]
SIDIS cross section

\[e^+ p \rightarrow e^+ h^{+/−} X \]

Inclusive

\[f_1(x) \]

Semi-inclusive

\[f_1(x, p_T) \]

Superposition in basis of \(s_⊥, s_∥, S_∥, S_⊥, \lambda_e \)

DF **TMD**

<table>
<thead>
<tr>
<th>nuclide</th>
<th>quark</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(f_1)</td>
<td>(h_1^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>(g_1)</td>
<td>(h_1^L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(f_{1T})</td>
<td>(g_{1T})</td>
<td>(h_1 h_{1T})</td>
<td></td>
</tr>
</tbody>
</table>

\[
\sigma^{eN→ehX} = \sum DF_{N→q} \otimes \sigma^{eq→eq} \otimes FF^{q→h}
\]

FF **TMD**

<table>
<thead>
<tr>
<th>quark</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>had U</td>
<td>(D_1)</td>
<td>(H_1^+)</td>
<td></td>
</tr>
</tbody>
</table>
Subleading (twist-3) $A_{LU}^{\sin \phi_h}$

Total SIDIS cross section

$$d\sigma = d\sigma_{UU} + \lambda_e \frac{1}{Q} \sin(\phi_h) d\sigma_{LU} + S_{||} [...] d_{UL} + S_{\perp} \lambda_e [...] d_{LL} + S_{||} [...] d_{UT} + S_{\perp} \lambda_e [...] d_{LT} = d\sigma_{UU} \left\{ 1 + \lambda_e A_{LU}^{\sin \phi_h} \sin \phi_h \right\}$$

Beam spin asymmetry

$$A_{LU}(\phi_h) = \frac{d\sigma_{LU}}{d\sigma_{UU}} = \frac{d\sigma(\lambda_e) - d\sigma(-\lambda_e)}{d\sigma(\lambda_e) + d\sigma(-\lambda_e)} = A_{LU}^{\sin \phi_h} \sin(\phi_h)$$

$$d\sigma_{LU} \sim A_{LU}^{\sin \phi} \sim f(y) \cdot \frac{2M}{Q} C \left[- \frac{\vec{h} \cdot k_T}{M_h} \left(x e H_1^\perp + \frac{M_h}{M} f_1 \frac{1}{z} G \right) + \frac{\vec{h} \cdot p_T}{M} \left(x g D_1 + \frac{M_h}{M} h_1^\perp \frac{E}{z} \right) \right]$$
Subleading (twist-3) $A_{LU}^{\sin \phi_h}$

Total SIDIS cross section

$$d\sigma = d\sigma_{UU} + \frac{1}{Q} \lambda_e \sin(\phi_h) d\sigma_{LU} + S_\parallel [...] d_{UL} + S_\perp \lambda_e [...] d_{LL} +$$

$$+ S_\perp [...] d_{UT} + S_\perp \lambda_e [...] d_{LT} = d\sigma_{UU} \left\{ 1 + \lambda_e A_{LU}^{\sin \phi_h} \sin \phi_h \right\}$$

Beam spin asymmetry

$$A_{LU}(\phi_h) = \frac{d\sigma_{LU}}{d\sigma_{UU}} = \frac{d\sigma(\lambda_e) - d\sigma(-\lambda_e)}{d\sigma(\lambda_e) + d\sigma(-\lambda_e)} = A_{LU}^{\sin \phi_h} \sin(\phi_h)$$

kinematic prefactor

$$d\sigma_{LU} \sim f(y) \frac{2M}{Q} C \left[-\vec{h} \cdot k_T \left(x e H_{1}^1 + \frac{M}{M_h} f_{1} G \right) + \frac{\vec{h} \cdot p_T}{M} \left(x g D + \frac{M}{M} h_1 E \right) \right]$$

Twist-3 DF and FF

Collins

unpolarized

Boer - Mulders
The HERMES experiment at HERA

\[E_{\text{beam}} = 27.6 \ \text{GeV} \]

lepton-hadron > 98%

π ~ 98%, K ~ 88%, P ~ 85%

Hadron separation
Maximum likelihood function

• Data sample consist of N independent measured events with kinematic variables \(\xi \)
 \(\xi \) is \(\phi_h, x_B, y, z, P_{h\perp} \)
• events are distributed according to Probability Density Function,
 \(p(\xi, \theta) \)

\[\Theta - \text{is set of parameters(here 1 par):} \quad A_{LU}^{\sin\phi_h} = \frac{d\sigma_{LU}}{d\sigma_{UU}} \]

\[p(\phi_h, A_{LU}^{\sin\phi_h}) \sim \left\{ 1 + \lambda_e A_{LU}^{\sin\phi_h} \sin\phi_h \right\} \]

Likelihood function

\[L(\phi_h, A_{LU}^{\sin\phi_h}) = \prod \ p(\phi_h, A_{LU}^{\sin\phi_h}) = \prod_{pol>0}^{N^+} p^{w^+}(\phi_h, A_{LU}^{\sin\phi_h}) \prod_{pol<0}^{N^-} p^{w^-}(\phi_h, A_{LU}^{\sin\phi_h}) \]

Beam Balance

\[\sum_{i=1}^{DIS^+} P_i + w^- \sum_{i=1}^{DIS^-} P_i = 0 \]

\[w^+ = 1 \]

\[w^- = \sum_{i=1}^{DIS^+} P_i / \sum_{i=1}^{DIS^-} P_i \]
Compared to CLAS(E=5.76 GeV) and COMPASS (E=160 GeV) experiments.
New results. Hydrogen target
New results. Deuterium target
Conclusions

- Recently obtained BSA of pions, kaons, proton and antiproton on hydrogen and deuterium target with increased statistics

- kaons BSA asymmetries are measured for the first time

- proton and antiproton BSA are presented for the first time in SIDIS analysis

- pions BSA are slightly positive

- kaon and proton/antiproton BSA are consistent with zero