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Abstract. Spin Density Matrix Elements (SDMEs) describing the angular distribution of exclusive
ρ0 electroproduction and decay are determined in the HERMES experiment with 27.6 GeV beam
energy and unpolarized hydrogen and deuterium targets. Eight (fifteen) SDMEs that are related
(unrelated) to the longitudinal polarization of the beam are extracted in the kinematic region
1 GeV2 < Q2 < 7 GeV2, 3.0 GeV < W < 6.3 GeV, and −t < 0.4 GeV2. Within the given
experimental uncertainties, a hierarchy of relative sizes of helicity amplitudes is observed. Kinematic
dependences of all SDMEs on Q2 and t are presented, as well as the longitudinal-to-transverse
ρ0 electroproduction cross section ratio as a function of Q2. A small but statistically significant
deviation from the hypothesis of s-channel helicity conservation is observed. An indication is seen of
a contribution of unnatural-parity-exchange amplitudes; these amplitudes are naturally generated
with a quark-exchange mechanism.

PACS. 13.60.-r,13.60.Le,13.88.+e
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1 Introduction

In exclusive production of vector mesons such as ρ, ω
or φ from deep-inelastic lepton scattering (see Fig. 1),
measurements of angular and momentum distributions
of the scattered lepton and vector meson decay prod-
ucts allow one to study the production mechanism and,
in a model-dependent way, the structure of the nu-
cleon.

For more than 40 years, many basic features of vec-
tor meson production by a virtual photon have been
successfully explained in terms of the Vector Meson
Dominance (VMD) model [1,2]. In this model, the vir-
tual photon fluctuates into a vector meson whose inter-
action with the nucleon could be described, for exam-
ple, using Regge phenomenology. More recently, in the
context of perturbative Quantum Chromo-Dynamics
(pQCD), exclusive meson production at sufficiently
large values of the photon virtuality Q2 and the invari-
ant mass of the photon-nucleon system W is assumed
to be dominated by so-called handbag-diagrams (see
Fig. 2) that involve various non-perturbative nucleon
structure functions, known as Generalized Parton Dis-
tributions (GPDs) [3–6].

In pQCD, the common model of the production
of vector mesons at high Q2 and W can be consid-
ered as three consecutive steps [7]: i) dissociation of
the virtual photon into a quark-antiquark (qq̄) pair,
ii) scattering of the pair on a nucleon (nucleus), iii)

−Q
2

e(k)

e’(k’)

tN(p) N’(p’)

γ∗

(v)ρo

2
W

(q)

Fig. 1. A generic t-channel exchange process for γ⋆N →
ρ0N ′. Each particle’s four-momentum is denoted in paren-
theses.

formation of the observed vector meson from the qq̄-
pair. (A full quantum mechanical treatment includes
all possible time orderings, which may be more impor-
tant at lower energies.) The interaction of the qq̄-pair
with the nucleon can proceed via two distinct mecha-
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nisms. The first one, two-gluon exchange, is described
by the Feynman diagram shown in Fig. 2a. This pro-
cess transfers the same quantum numbers as pomeron
exchange in the Regge picture, and is anticipated to
exhibit a similar phenomenology. The second mecha-
nism is described by the exchange of a qq̄-pair, also
possibly with additional gluons connecting them, and
is called quark-exchange (Fig. 2b). The corresponding
process in Regge phenomenology [8] is the exchange
of “secondary” reggeons, such as ρ, ω, f2 and a2 in
the case of natural-parity exchange (NPE), in which
the spin J and parity P associated with the reggeon
trajectory are JP = 0+, 1−, 2+, ..., or π, a1, b1 mesons
with JP = 0−, 1+, ... in the case of “unnatural-parity”
exchange (UPE). In the GPD formalism, NPE (UPE)

processes are described by H and E (H̃ and Ẽ) GPDs.
In the intermediate energy range of the HERMES ex-
periment (3 GeV < W < 6 GeV) and the moderate
values of photon virtuality (1 GeV2 < Q2 < 7 GeV2)
both Regge phenomenology and pQCD may be applied
to describe exclusive vector meson production. The in-
terpretations they offer of the experimental data are
often complementary, although not necessarily consis-
tent.

The main focus of this work is on the measurement
of Spin Density Matrix Elements (SDMEs) of the ρ0

meson, which describe the distribution of final spin
states of this produced vector meson. These elements
depend on amplitudes for the angle- and momentum-
dependent transition processes between initial spin
states of the virtual photon and final spin states of the
produced vector meson. The values of SDMEs serve
to establish the hierarchy of helicity amplitudes that
are commonly used to describe exclusive ρ0 produc-
tion. In this way the relative importance of the vari-
ous γ∗ → ρ0 transitions is revealed. Two main order-
ing principles are observed in vector meson leptopro-
duction, s-channel helicity conservation (SCHC) and
the dominance of NPE over UPE mechanisms. SCHC
implies that only γ∗ → ρ0 transitions with the same
helicities of virtual photon and ρ0 occur in the reac-
tion when considered in the “hadronic” center-of-mass
frame (defined below). These concepts apply both in
the reggeon-exchange picture and in pQCD. In par-
ticular, we note that a signal of UPE is evidence of
quark-antiquark exchange (Fig. 2b), as the pomeron
has natural parity.

At high energies pomeron exchange dominates, and
secondary-reggeon exchanges with natural parity are
suppressed by a factor ∼M/W [8] in their amplitudes;
M is an energy scale in Regge phenomenology cho-
sen to be equal to the nucleon mass. Also suppressed,
by a factor ∼ (M/W )2 [8], are the most important
unnatural-parity exchanges mediated by π, a1, and b1
reggeons. Therefore substantial UPE contributions can
be expected only at lower values of W .

In the pQCD framework, the leading-twist contri-
bution describes the transition of longitudinal photons

q

ρ0

qg

b)a)
P P’ P’P

γ

g

0γ∗ ∗ ρ

Fig. 2. Examples of a) a two-gluon exchange diagram and
b) a quark-exchange diagram, shown for the lowest order
in the strong coupling constant αs.

to longitudinal vector mesons, which is s-channel he-
licity conserving and corresponds to natural-parity ex-
change. As it is not agreed how strongly the various
other contributions are suppressed at a given energy,
measurements of SDMEs in the HERMES kinematics
help to distinguish these contributions and are of par-
ticular interest. Non-conservation of s-channel helicity
in exclusive ρ0 production was already observed at col-
lider energies [9–11]. At lower energies it was observed
at HERMES [12], and for exclusive ω production at
CLAS [13].

At sufficiently large values of W , experiments are
typically sensitive to partons that carry small nucleon
momentum fraction x, where the parton density in the
nucleon is dominated by gluons. High-energy data of
H1 and ZEUS [9–11,14] are well described by two-
gluon exchange. At lower values of W , larger values
of x are probed, where the parton density in the nu-
cleon receives significant contributions from quarks.
Indeed, a contribution from the quark-exchange mech-
anism has been suggested to be necessary to describe
exclusive ρ0 production at intermediate virtual-photon
energies, as in the case of the HERMES data [15–18]
and corresponding calculations [19–22].

In leptoproduction, the spin transfer from the vir-
tual photon to the vector meson is commonly described
by helicity amplitudes, from which SDMEs can be con-
structed. The detection of the scattered lepton and the
vector meson decay products allows one to reconstruct
the full reaction kinematics and the three-dimensional
angular distribution of the production and decay of
the ρ0 meson. For an unpolarized or helicity-balanced
lepton beam, the expression for this distribution con-
tains a set of “unpolarized” SDMEs as coefficients. An
additional set of “polarized” SDMEs, which appear in
products with the beam polarization in the expression
for the angular distribution with polarized beam, can
be determined if information on the longitudinal polar-
ization of the lepton beam is available [23,24]. In a very
recent new classification scheme of SDMEs [25], also
the cases of longitudinal and transverse target polar-
izations are described. However, the analysis in this pa-
per follows the representation introduced in Ref. [23].



4

Early theoretical calculations [2] of SDMEs in vec-
tor meson production were based on the VMD model.
More recent calculations combining this model with
pQCD models [7,26–30] and with Regge phenomenol-
ogy [31,32] are mainly focused on the high-energy kine-
matics of the HERA collider data. A contemporary ac-
count of the various theoretical approaches is given in
Ref. [14]. Recent model calculations based on GPDs
present SDMEs for both high and intermediate en-
ergies, considering first only two-gluon exchange [33],
and recently incorporating quark exchange [34,35].

In this analysis, the beam polarization is used for
the first time in an SDME extraction, thereby making
possible the determination of the additional 8 polar-
ized SDMEs. The high-statistics data samples accu-
mulated at HERMES in the years 1996–2005 on both
hydrogen and deuterium targets are used to determine
ρ0 decay angle distributions with an accuracy superior
to that of the previously published HERMES 3He data
from 1995 [16] and of the preliminary HERMES results
from hydrogen data collected in 1996–1997 [12,36].
The improved statistical accuracy permits the study
of the nature of the exchange mechanism, and in par-
ticular the testing of the hypothesis of s-channel he-
licity conservation. The availability of both hydrogen
and deuterium targets offers the possibility to search
for significant contributions of secondary reggeon ex-
change with isospin I = 1 and natural parity.

The structure of this paper is as follows. The kine-
matics, SDME formalism, and HERMES experiment
are described in the next three sections. The analysis
procedure including event selection and background
subtraction is discussed in section 5. The extraction
of the SDMEs from the data using a Monte Carlo
based maximum likelihood method is described in sec-
tion 6. The experimental results on SDMEs integrated
over the entire observed kinematic region are pre-
sented in section 7, and their kinematic dependences
are shown in section 8. An indication of the contribu-
tion of unnatural-parity-exchange amplitudes is dis-
cussed in section 9. Contributions of helicity-flip and
UPE amplitudes to the cross section are estimated in
section 10. The ratio of longitudinal to transverse ρ0

electroproduction cross-sections is presented in section
11. The results are summarized in section 12.

2 Kinematics

Figure 1 identifies the kinematic variables of ρ0 lepto-
production,

γ∗ +N → ρ0 +N ′, (1)

where N(N ′) denotes the initial (scattered) nucleon.
The four-momenta of the incoming and outgoing lep-
ton are denoted by k and k′, the difference of which
defines the four-momentum q of the virtual photon γ∗.
In the laboratory (lab) frame, ϑ is the scattering an-
gle between the incoming and outgoing lepton, whose

incoming and outgoing energies are denoted by E and
E′. The photon virtuality is given by:

Q2 = −q2 = −(k − k′)2
lab≈ 4E E′ sin2 ϑ

2
, (2)

which is positive in leptoproduction. In this equation
the electron rest mass is neglected. The four-momenta
of the target nucleon and of the recoiling baryon are
denoted by p and p′, respectively, and both have rest
mass M of the nucleon, irrespective of target.

The Bjorken scaling variable xB is defined as1

xB =
Q2

2 p · q =
Q2

2M ν
, (3)

with

ν =
p · q
M

lab
= E − E′, (4)

so that ν represents the energy transfer from the in-
coming lepton to the virtual photon in the labora-
tory frame. The squared invariant mass of the photon-
nucleon system is given by:

W 2 = (q + p)2 = M2 + 2M ν −Q2. (5)

The squared four-momentum transfer from virtual pho-
ton to vector meson equals that between the momenta
of the initial and final nucleons or nuclei,

t = (q − v)2 = (p− p′)2, (6)

where v is the four-momentum of the vector meson.
The variables t, t0, and

t′ = t− t0 (7)

are always negative, where −t0 represents the smallest
kinematically allowed value of −t at fixed ν and Q2.
In the photon-nucleon center-of-mass frame considered
here, the condition t = t0 corresponds to the case
where the momentum of the produced ρ0 is collinear
with that of the γ∗. Typically for exclusive processes
at intermediate and high energies, |t0| is much smaller
than |t| and therefore t′ ≈ t.

At very low t, the approximation −t′ ≈ v2
T holds,

where vT is the transverse momentum of the vector
meson with respect to the direction of the virtual pho-
ton, i.e., the subtraction of t0 removes the contribu-
tion of the longitudinal component of the momentum
transfer.

1 This kinematic observable is to be distinguished from
the variable x of the quark parton model, which represents
in the GPD formalism the average longitudinal momentum
fraction of the probed parton in the initial and final states.
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ρo
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Fig. 3. Definition of angles in the process γ⋆N → ρoN ′ →
π+π−N ′ [37]. Here Φ is the angle between the ρ0 pro-
duction plane and the lepton scattering plane in the
“hadronic” center-of-mass system of virtual photon and
target nucleon. Θ and φ are polar and azimuthal angles of
the decay π+ in the vector meson rest frame.

The variable ǫ represents the ratio of fluxes of lon-
gitudinal and transverse virtual photons:

ǫ =
1 − y − y2 Q2

4ν2

1 − y + 1
4y

2(Q2

ν2 + 2)
(8)

lab≈ 1

1 + 2(1 + ν2

Q2 ) tan2 ϑ
2

with y = p · q/p · k lab
= ν/E.

The “exclusivity” of ρ0 production is characterized
by the variable

∆E =
M2

X −M2

2M

lab
= EV − (Eπ+ + Eπ−), (9)

where MX is the invariant mass of the recoiling sys-
tem, EV = ν+ t/(2M) is the energy of the exclusively
produced ρ0 meson, and (Eπ+ +Eπ−) is the sum of the
energies of the two pions. For exclusive vector meson
production (1), MX = M holds and hence ∆E = 0,
given perfect detector and beam energy resolution.

Angles used for the description of the process
γ⋆N → ρoN ′ → π+π−N ′ are defined according to
Ref. [37] and presented in Fig. 3. The helicity amp-
litudes are defined in the “hadronic” center-of-mass
system of virtual photon and target nucleon, where
the Z-axis is directed along the virtual photon three-
momentum q. The Y -axis of the right-handed system
is parallel to q× v. It is the normal to the ρ0 produc-
tion plane spanned by the three-momenta q and v, of

the virtual photon and ρ0-meson, respectively. The an-
gle Φ between the ρ0-production plane and the lepton-
scattering plane in the “hadronic” center-of-mass sys-
tem is specified by:

cosΦ =
(q × v) · (k × k′)

|q × v| · |k × k′| , (10)

sinΦ =
[(q × v) × (k × k′)] · q
|q × v| · |k × k′| · |q| .

The angle φ between the ρ0-production plane and
ρ0-decay plane is defined by:

cosφ =
(q × v) · (v × pπ+)

|q × v| · |v × pπ+ | , (11)

sinφ =
[(q × v) × v] · (pπ+ × v)

|(q × v) × v| · |pπ+ × v| ,

where pπ+ is the three-momentum of the positive de-
cay pion in the “hadronic” center-of-mass system.

The polar angle Θ of the decay π+ in the vector
meson rest frame, with the z-axis aligned opposite to
the outgoing nucleon momentum P′ and the y-axis
parallel to Y and directed along P′ × q, is defined by:

cosΘ =
−P′ · Pπ+

|P′| · |Pπ+ | , (12)

where Pπ+ is the three-momentum of the positive de-
cay pion.

Note that the relation between this notation and
the notations of the so-called “Trento convention” [38]
and Ref. [25] is: Φ = −φ[25] = −φh[38], φ = ϕ[25],
Θ = ϑ[25].

3 Formalism

3.1 Helicity Amplitudes

Exclusive vector meson leptoproduction (1) is com-
monly described by helicity amplitudes FλV λ′

N
;λγλN

,
defined in the “hadronic” center-of-mass system of vir-
tual photon and target nucleon [23] (see Fig. 3). He-
licity indices λγ and λV describe the spin states of
virtual photon and ρ meson, respectively, while λN

(λ′N ) is the helicity of the initial (scattered) nucleon.
The helicity amplitude can be expressed as the scalar
product of the matrix element of the electromagnetic
current vector Jµ and the virtual-photon polarization

vector e
(λγ)
µ :

FλV λ′

N
;λγλN

= (−1)λγ 〈vλV ; p′λ′N |Jµ|pλN 〉e(λγ)
µ , (13)

where e
(±1)
µ describes the transverse and e

(0)
µ the lon-

gitudinal polarization of the virtual photon. The ket
vector |pλN 〉 corresponds to the incident nucleon and
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the bra vector 〈vλV ; p′λ′N | describes the final state of
the ρ0 meson and scattered nucleon. The amplitudes
depend on Q2, W and t. For convenience, these depen-
dences may be omitted in the following.

The amplitudes obey the relation [23]

F−λV −λ′

N
;−λγ−λN

=

(−1)(λV −λ′

N )−(λγ−λN )FλV λ′

N
;λγλN

, (14)

which is a consequence of parity conservation in the
strong and electromagnetic interactions.

3.2 Natural and Unnatural-Parity-Exchange
Amplitudes

A helicity amplitude F can be decomposed into an
amplitude T for natural-parity exchange and an am-
plitude U for unnatural-parity exchange:

FλV λ′

N
;λγλN

= TλV λ′

N
;λγλN

+ UλV λ′

N
;λγλN

, (15)

with

TλV λ′

N
;λγλN

=

1

2

(
FλV λ′

N
;λγλN

+ (−1)−λV +λγF−λV λ′

N
;−λγλN

)
, (16)

UλV λ′

N
;λγλN

=

1

2

(
FλV λ′

N
;λγλN

− (−1)−λV +λγF−λV λ′

N
;−λγλN

)
. (17)

From definitions (16), (17) and relation (14) the amp-
litudes T and U obey the symmetry relations [23]:

TλV λ′

N
;λγλN

= (−1)−λV +λγT−λV λ′

N
;−λγλN

= (−1)λ′

N−λNTλV −λ′

N
;λγ−λN

, (18)

UλV λ′

N
;λγλN

= −(−1)−λV +λγU−λV λ′

N
;−λγλN

= −(−1)λ′

N−λNUλV −λ′

N
;λγ−λN

. (19)

For convenience, we introduce the abbreviation∑̃ ≡ 1
2

∑
λ′

N
λN

for the summation over the final nu-

cleon helicity indices and averaging over the initial spin
states of the nucleon. In the following the nucleon he-
licity indices of the amplitudes are implicit, but will
be included when required for clarity. If TλV λγ

appears

without the symbol
∑̃

, all nucleon helicity indices are
equal to 1/2.

For NPE amplitudes, transitions diagonal in nu-
cleon spin (λ′N = λN ) are dominant. Furthermore,
since for scattering off an unpolarized target there
is no interference between nucleon spin-flip and non-
spin-flip amplitudes, the fractional contribution of nu-
cleon spin-flip NPE amplitudes to SDMEs is of the

order of −t′/(4M2), which is small at low t′. In this
case, neglecting the small nucleon spin-flip amplitudes
TλV ±1/2;λγ∓1/2 and using (18) reduces the summation

and averaging
∑̃

to one term:

∑̃
TλV λγ

T ∗
λ′

V
λ′

γ
≡ 1

2

∑

λN λ′

N

TλV λ′

N
;λγλN

T ∗
λ′

V
λ′

N
;λ′

γλN

= TλV 1/2;λγ1/2T
∗
λ′

V
1/2;λ′

γ1/2

+TλV −1/2;λγ1/2T
∗
λ′

V
−1/2;λ′

γ1/2

≈ TλV 1/2;λγ1/2T
∗
λ′

V
1/2;λ′

γ1/2 ≡ TλV λγ
T ∗

λ′

V
λ′

γ
, (20)

where T ∗ represents the complex conjugate quantity.
For UPE amplitudes in general, the dominance of

diagonal transitions (λN = λ′N ) cannot be proven, so
that no relation similar to (20) can be derived and

therefore
∑̃

is always used.
For unpolarized targets, there is no interference be-

tween NPE and UPE amplitudes [23] as

∑̃
TλV λγ

U∗
λ′

V
λ′

γ
= 0 , (21)

following from relations (18) and (19) without addi-
tional assumptions.

3.3 Spin Density Matrices of Photon and Vector
Meson

The photon spin density matrix normalized to unit
flux of transverse photons comprises the unpolarized
(U) and polarized (L) matrices2, with Pbeam being the
longitudinal polarization of the beam:

̺U+L
λγλ′

γ
= ̺U

λγλ′

γ
+ Pbeam ̺L

λγλ′

γ
, (22)

̺U
λγλ′

γ
(ǫ, Φ) = (23)

1

2




1
√
ǫ(1 + ǫ)e−iΦ −ǫe−2iΦ

√
ǫ(1 + ǫ)eiΦ 2ǫ −

√
ǫ(1 + ǫ)e−iΦ

−ǫe2iΦ −
√
ǫ(1 + ǫ)eiΦ 1


,

̺L
λγλ′

γ
(ǫ, Φ) =

√
1 − ǫ

2




√
1 + ǫ

√
ǫe−iΦ 0√

ǫeiΦ 0
√
ǫe−iΦ

0
√
ǫeiΦ −

√
1 + ǫ


 . (24)

The spin density matrix ρλV λ′

V
of the produced

vector meson is related to that of the virtual photon,
̺U+L

λγλ′

γ
, through the von Neumann formula:

ρλV λ′

V
=

1

2N
∑

λγλ′

γλN λ′

N

FλV λ′

N
;λγλN

̺U+L
λγλ′

γ
F ∗

λ′

V
λ′

N
;λ′

γλN
, (25)

2 The adjectives “(un)polarized” are used here with the
same meaning as when applied to SDMEs.
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where FλV λ′

N
;λγλN

denotes the helicity amplitude of

the γ∗N → ρ0N transition defined in (13). The nor-
malization factor is given by

N = NT + ǫNL, (26)

with

NT =
∑̃

(|T11|2 + |T01|2 + |T−11|2

+ |U11|2 + |U01|2 + |U−11|2), (27)

NL =
∑̃

(|T00|2 + 2|T10|2 + 2|U10|2). (28)

Equation (28) is obtained by using symmetry relations
(18) and (19).

If the spin density matrix of the photon is decom-
posed into the standard set of nine hermitian matrices
Σα (α = 0, 1, ..., 8), a set of nine matrices ρα

λV λ′

V
is

obtained for the vector meson [23]:

ρα
λV λ′

V
=

1

2Nα

∑

λγλ′

γλ′

N
λN

FλV λ′

N
;λγλN

Σα
λγλ′

γ
F ∗

λ′

V
λ′

N
;λ′

γλN

≡ 1

Nα

∑̃
λγλ′

γ

FλV λγ
Σα

λγλ′

γ
F ∗

λ′

V
λ′

γ
. (29)

The four matrices ρα for α = 0, 1, 2, 3 in (29) describe
vector meson production by transverse virtual pho-
tons: unpolarized, linearly polarized in two orthogonal
directions, and circularly polarized, respectively. For
these cases Nα = NT . Vector meson production by
longitudinal virtual photons corresponds to α = 4 in
(29) and Nα = NL. The interference between the amp-
litudes of vector meson production by transverse and
longitudinal virtual photons is described by (29) for
α = 5, 6, 7, and 8 with Nα =

√NTNL.

3.4 Cross Sections

The differential cross section of the reaction γ∗N →
ρ0N → π+π−N is given by

dσfull(W,Q
2)

dt dΦ dφ d cosΘ
=
f(W,Q2)

4π

×
∑

λγλ′

γλV λ′

V
λN λ′

N

FλV λ′

N
;λγλN

̺U+L
λγλ′

γ
(ǫ, Φ) F ∗

λ′

V
λ′

N
;λ′

γλN

× Y1λV
(φ, cosΘ) Y ∗

1λ′

V
(φ, cosΘ), (30)

in terms of ̺U+L
λγλ′

γ
, the virtual-photon spin density ma-

trix, the helicity amplitudes FλV λ′

N
;λγλN

describing
the transition of the virtual photon with helicity λγ

to the vector meson with helicity λV , and the spher-
ical harmonics Y1m(φ, cosΘ),m = ±1, 0 (defined as
in [23,14,25]) that describe the angular distribution of

the pions from the decay ρ0 → π+ +π−. It is assumed
here that the branching ratio of the ρ0-meson decay
into π+π− is 100%. The kinematic factor

f(W,Q2) =
1

16π(ν2 +Q2)
(31)

in (30) accounts for the fact that the flux of transverse
photons in electroproduction is not unity (see Ref. [23]
for the relation of the differential virtual-photon cross
section to the differential electroproduction cross sec-
tion).

The singly differential cross section
dσfull

dt for ρ0

meson production is obtained by integrating (30) over
Φ, φ, cosΘ. The integration over Φ eliminates the
interference between contributions of transverse and
longitudinal photons and makes the photon density
matrix diagonal. For this case, the full differential cross
section becomes the linear combination of the cross
sections dσT

dt and dσL

dt of vector meson production with
transverse and longitudinal photons, respectively:

dσfull

dt
= ǫ

dσL

dt
+
dσT

dt
, (32)

where

dσi

dt
(W,Q2, t) = f(W,Q2)Ni(W,Q

2, t), (33)

for i = L, T , where NT and NL are defined in (27) and
(28), respectively.

The “differential” longitudinal-to-transverse cross
section ratio is defined as:

R(W,Q2, t) ≡ dσL

dt
/
dσT

dt
=

NL

NT
. (34)

The complete representation for R in terms of helicity
amplitudes is obtained by inserting (28) and (27) into
(34). Approximate expressions for R related to SCHC
or NPE will be discussed in section 11.

3.5 Accessible Spin Density Matrix Elements

For an unpolarized target and a longitudinally polar-
ized beam, the 3-dimensional angular distribution of
ρ0 production and decay is described by 26 matrix el-
ements ρα

λV λ′

V
[23]. If the experiment can be performed

only at one beam energy, the matrix elements ρ0
λV λ′

V

and ρ4
λV λ′

V
cannot be disentangled, so that only 23 el-

ements are accessible. It is customary to extract from
the experimental data the following elements:

r04λV λ′

V
= (ρ0

λV λ′

V
+ ǫRρ4

λV λ′

V
)/(1 + ǫR),

rα
λV λ′

V
=





ρα

λV λ′

V

(1+ǫR) , α = 1, 2, 3,
√

Rρα

λV λ′

V

(1+ǫR) , α = 5, 6, 7, 8.
(35)
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From now on, we will designate r04λV λ′

V
and rα

λV λ′

V

(α = 1-3, 5-8) as the Spin Density Matrix Elements
(SDMEs).

In Appendix A, (77)-(99), the SDMEs are ex-
pressed in terms of NPE and UPE amplitudes, as ob-
tained by combining (29) and (35).

3.6 Extraction of SDMEs from Measured Angular
Distributions

Measurement of the 3-dimensional ρ0 production and
decay angular distribution

WU+L(W,Q2, t, Φ, φ, cosΘ)

≡ dσfull

dt dΦ dφ d cosΘ
/
dσfull

dt
(36)

reveals the helicity structure of the γ∗N → ρ0N tran-
sition. Its integral over the variables Φ, φ, and cosΘ is
equal to unity. The W,Q2 and t dependences of WU+L

are contained in the corresponding dependences of
the SDMEs rα

λV λ′

V
. The full angular dependence of

WU+L(Φ, φ, cosΘ), as a linear function of the SDMEs
rα
λV λ′

V
, is given in (37-39) as derived in Ref. [23]. (Note

that these formulae are on the next page.)

3.7 s-Channel Helicity Conservation.

The measurement of SDMEs allows the determination
of the extent to which s-channel helicity is conserved
for a given process and kinematic conditions. SCHC
implies that the contributions from all non-diagonal
transitions FλV λ′

N
;λγλN

with λγ 6= λV are zero. In
terms of NPE and UPE amplitudes, only T00, T11, and
U11 remain. As a consequence, all spin density matrix
elements vanish except the unpolarized SDMEs r0400,
r11−1, Im{r21−1}, Re{r510}, Im{r610}, and the polarized
ones Im{r710} and Re{r810}, as can be seen from (77-
99) of Appendix A. If SCHC holds, SDMEs are not
independent, as the following relations apply:

r11−1 = −Im{r21−1}, (40)

Re{r510} = −Im{r610}, (41)

Re{r810} = Im{r710}. (42)

The measurement of SDMEs also allows the deter-
mination of the extent to which the unnatural-parity-
exchange mechanism is relevant for a given process and
kinematic conditions. If natural-parity exchange dom-
inates, so that the amplitude U11 can be neglected, an
additional relation is obtained:

1 − r0400 = 2r11−1 = −2Im{r21−1}. (43)

4 The HERMES Experiment

The HERMES experiment at DESY used a 27.6 GeV
longitudinally polarized positron or electron beam im-
pinging on pure hydrogen or deuterium gas targets in-
ternal to the HERA storage ring. Parts of the data set
were collected with longitudinally or transversely po-
larized targets, the polarization of which was flipped
approximately every minute. The average over the tar-
get polarization values was confirmed to be consistent
with zero, as required for the extraction of SDMEs in
this analysis. The lepton beam was transversely self-
polarized by the emission of synchrotron radiation [39].
Longitudinal polarization at the interaction point was
achieved by spin rotators located upstream and down-
stream of the HERMES apparatus. For both positive
and negative beam helicities, the beam polarization
was continuously measured by two Compton polarime-
ters [40,41]. The average beam polarization for the
hydrogen (deuterium) data set was 0.45 (0.47) after
requiring 0.15 < Pbeam < 0.8, and the fractional sys-
tematic uncertainty of the beam polarization was 3.4%
(2.0%) [40,41].

The data sample recorded with a longitudinally po-
larized hydrogen (deuterium) target, representing 14%
(38%), of the total statistics, has a residual polariza-
tion of 0.0221 ± 0.0001 (−0.0036 ± 0.0009). The data
sample recorded with a transversely polarized hydro-
gen target, representing 35%, has a residual polariza-
tion of 0.0028± 0.0001. The systematic uncertainty of
the target polarization measurement is typically 0.04.

The HERMES spectrometer is described in de-
tail in Ref. [42]. It was a forward spectrometer in
which both scattered lepton and produced hadrons
were detected within an angular acceptance ±170
mrad horizontally, and ±(40 - 140) mrad vertically.
The scattered-lepton trigger was formed from a coin-
cidence between three scintillator hodoscopes and a
lead-glass calorimeter. The trigger required an energy
of more than 3.5 GeV deposited in the calorimeter.
The tracking system had a momentum resolution of
≈ 1.5% and an angular resolution of ≈ 1 mrad. Lep-
ton identification was accomplished using a lead-glass
calorimeter, a preshower detector consisting of a scin-
tillator hodoscope preceded by a lead sheet, and a
transition-radiation detector. Until 1998 the particle
identification system included a gas threshold C̆eren-
kov counter, which was replaced in 1999 with a dual-
radiator ring-imaging C̆erenkov detector (RICH) [43].
Combining the responses of these detectors in a likeli-
hood method leads to an average lepton identification
efficiency of 98% with a hadron contamination of less
than 1%.



9

WU+L(Φ, φ, cos Θ) = WU (Φ, φ, cos Θ) + WL(Φ, φ, cos Θ), (37)

WU (Φ, φ, cos Θ) =
3

8π2

"
1

2
(1 − r04

00) +
1

2
(3r04

00 − 1) cos2 Θ −
√

2Re{r04
10} sin 2Θ cos φ − r04

1−1 sin2 Θ cos 2φ

− ǫ cos 2Φ
“
r1
11 sin2 Θ + r1

00 cos2 Θ −
√

2Re{r1
10} sin 2Θ cos φ − r1

1−1 sin2 Θ cos 2φ
”

− ǫ sin 2Φ
“√

2Im{r2
10} sin 2Θ sin φ + Im{r2

1−1} sin2 Θ sin 2φ
”

+
p

2ǫ(1 + ǫ) cos Φ
“
r5
11 sin2 Θ + r5

00 cos2 Θ −
√

2Re{r5
10} sin 2Θ cos φ − r5

1−1 sin2 Θcos2φ
”

+
p

2ǫ(1 + ǫ) sin Φ
“√

2Im{r6
10} sin 2Θ sin φ + Im{r6

1−1} sin2 Θ sin 2φ
”#

, (38)

WL(Φ, φ, cos Θ) =
3

8π2
Pbeam

"p
1 − ǫ2

“√
2Im{r3

10} sin 2Θ sin φ + Im{r3
1−1} sin2 Θ sin 2φ

”

+
p

2ǫ(1 − ǫ) cos Φ
“√

2Im{r7
10} sin 2Θ sin φ + Im{r7

1−1} sin2 Θ sin 2φ
”

+
p

2ǫ(1 − ǫ) sin Φ
“
r8
11 sin2 Θ + r8

00 cos2 Θ −
√

2Re{r8
10} sin 2Θ cos φ − r8

1−1 sin2 Θ cos 2φ
”#

. (39)

5 Data Analysis

5.1 Exclusive ρ0 Events

Events accepted for the analysis are required to fulfill
the following criteria (see Refs. [12,44] for details):

– three tracks originate from the target and are
recorded in the spectrometer;

– two oppositely charged hadrons and one lepton
with the same charge as the beam are identified
through the likelihood analysis of the combined
responses of the four particle-identification detec-
tors [42];

– the reconstructed virtual photon satisfies the kine-
matic constraint 1 GeV2 < Q2 < 7 GeV2;

– the ρ0 meson is selected by requirements on the in-
variant mass of the two hadrons of opposite charge:
0.6 GeV < Mπ+π− < 1.0 GeV when both hadrons
are assumed to be pions, and the veto constraint
MK+K− ≥ 1.06 GeV, the latter under the hypoth-
esis that both hadrons are kaons. The veto con-
straint excludes contamination from φ → K+K−

decay. Two-pion invariant mass distributions in the
HERMES acceptance for proton and deuteron data
are presented in Fig. 4. A detailed description of
the invariant mass peak of exclusive ρ0 events is
published in Refs. [15,18] and also presented in
Ref.[12]. The distribution of these events in both
∆E and t′ is presented in Fig. 5.

– exclusive ρ0 events are selected by the requirement
−1.0 GeV < ∆E < 0.6 GeV (called the “exclusive
region” in the remainder of the text). The applica-
bility of such a constraint was explained in detail
in Ref. [18], as well as in Refs. [15,16,12]. In the

∆E spectrum the resolution due to instrumental
effects ranges between 0.26 and 0.38 GeV depend-
ing on the spectrometer configuration.

– the “final event sample” of ρ0 events is obtained
from the sample of exclusive events by the addi-
tional requirement −t′ < 0.4 GeV2. This require-
ment ensures that the semi-inclusive background
does not exceed a level of about 10% in the kine-
matic bins of Q2 and t′ presented below.

After the application of all the above requirements,
the entire kinematic region contains 16362 ρ0 events
from hydrogen and 25940 events from deuterium, which
are used in the subsequent physics analysis.

5.2 Backgrounds for Exclusive ρ0 Events

In exclusive vector meson production, the target nu-
cleon remains intact. At HERMES the recoiling tar-
get nucleon was not detected and hence, given the ex-
perimental resolution, also a certain number of non-
exclusive events will satisfy the requirements for ex-
clusive events. They appear as background remaining
underneath the ∆E peak.

a) Background from Semi-Inclusive Deep-Inelastic Scat-
tering

Background events originate mainly from fragmenta-
tion processes in Semi-Inclusive Deep-Inelastic Scat-
tering (SIDIS), in which the final state contains a pair
of oppositely charged hadrons in the spectrometer.
Only a small fraction of this background passes the
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above-described ∆E and −t′ requirements for exclu-
sive ρ0 production.

The amount of SIDIS background and its angu-
lar distributions in the exclusive region can not be
determined with the present apparatus. Therefore,
the PYTHIA code [45] tuned for HERMES kinematic
conditions [46–48] is used. Exclusive processes were
excluded from the simulated sample. The simulated
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Fig. 6. Distribution of ∆E for the 1996-2005 hydrogen
data sample shown for four intervals in t′ after application
of all event selection requirements, except the one for ∆E.
The shaded areas represent the SIDIS background calcu-
lated by PYTHIA, normalized to the data in the region
2 GeV < ∆E < 20 GeV.

SIDIS events were passed through the same chain of
kinematic requirements as the experimental ones. Very
good agreement between the experimental data and
the simulation is observed for the shape of the ∆E
distributions in the region ∆E > 2 GeV for each kine-
matic interval in Q2, x or t′, and for both targets.
This agreement in shape is demonstrated in Fig. 6,
which shows four intervals in t′ as an example. Since
no absolute normalization between data and simula-
tion is required to determine the SDMEs (as shown
in the next section), for every kinematic interval the
fractional background contribution fbg in the exclusive
region can be obtained by normalizing the simulation
to the data in the region 2 GeV < ∆E < 20 GeV.
That is,

fbg = (NMC
excl /N

data
excl ) (Ndata

2−20/N
MC
2−20), (44)

where Ndata
2−20, N

MC
2−20 and Ndata

excl , NMC
excl are the total

number of measured and simulated events at 2 GeV <
∆E < 20 GeV and in the exclusive region, respec-
tively. This contribution amounts to 8% for the entire
kinematic region and ranges between 3 and 12% in the
different kinematic intervals. These values will be used
for the subtraction of the SIDIS background angular
distributions, as described in section 6.2.

b) Background from Non-resonant Exclusive π+π− Pairs

The contribution of non-resonant π+π− production
and its interference [49] with resonant ρ0 → π+ π−
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production are determined using a modified Breit-
Wigner fit to the invariant mass distribution. We do
not distinguish between resonant and non-resonant
contributions in ρ0 production, following the prac-
tice of previous experimental [9,50] and theoretical
publications [29,31,33,34]. Therefore the present data
were not corrected for non-resonant background, which
amounts to ∼ 4 – 8% depending on the kinematics [15,
17,12]. Note that the contribution of ρ0-ω interference
has been found to be negligible [15].

c) Background from Proton-Dissociative Processes

Another possible background consists of events in
which the target proton is excited to some other bary-
onic resonance, which then decays to a proton and
typically a soft pion. In the absence of a recoil de-
tector, such events cannot be distinguished, but their
contribution to the exclusive ρ0 production cross sec-
tion at HERMES was found to be small (4± 2%) [15].
No correction has been applied for this background, as
the extracted SDMEs were found to change negligibly
at a value of ∆E=0.2 GeV, where this background is
strongly suppressed. This approach is supported by re-
sults from ZEUS, where the decay angle distributions
of the proton-dissociative reaction have been found to
be consistent with those of exclusive events [9,10].

6 Extraction of SDMEs

6.1 Maximum Likelihood Method

In each bin of Q2 or t′, or the entire acceptance,
the SDMEs are obtained by minimizing the differ-
ence between the 3-dimensional (cosΘ,φ, Φ) produc-
tion and decay angle distribution of the experimen-
tal events and that of a sample of fully reconstructed
Monte Carlo events, using a binned maximum likeli-
hood method. For the Monte Carlo simulation, events
are generated isotropically in (Φ, φ, cosΘ) using the
rhoMC generator [15,16,44] for exclusive ρ0 produc-
tion, simulated in the instrumental context of the spec-
trometer, and passed through the same reconstruc-
tion chain as the experimental data. Introduction of
estimated misalignments of the spectrometer into the
Monte Carlo simulation used for the SDME extraction
was found to have a negligible effect on the results. The
variables cosΘ, φ, and Φ are binned in 8× 8× 8 cells.
The content of each of the 512 cells is weighted using
(37), whereby the 23 matrix elements are treated as
free parameters. The number of events di in each cell
is assumed to obey a Poisson distribution:

P (di, cNm
′
i) =

(cNm
′
i)

di

di!
e−cN m′

i , (45)

with mean value cNm
′
i, where cN = (

∑
j dj)/(

∑
j m

′
j)

is a normalization factor accounting for the difference
in the total number of events in the data (dj) and simu-
lated (m′

j) sample, and m′
i is the (re)weighted number

of simulated events in cell i. The likelihood function is
then defined as [51]

L(λ) =

cells∏

i

P (di, cN (λ)m′
i(λ)) , (46)

where λ represents the 23 fit parameters that are the
23 SMDEs. The best fit parameters were determined
by maximizing the logarithm of the likelihood func-
tion,

lnL(λ) =
∑

i

[di ln (cN (λ)m′
i(λ)) − cN (λ)m′

i]

+ constant , (47)

or equivalently by minimizing − lnL(λ).
The minimization itself and the uncertainty calcu-

lation are performed using the MINUIT package [52].
In the fitting procedure the samples with negative and
positive beam helicity are fitted simultaneously. The
values of χ2 per degree of freedom (χ2/d.o.f.) for the
16 kinematic intervals (Q2, t′ or x), calculated af-
ter completing their likelihood fits, range between 0.6
and 1.2 for 8 × 8 × 8 − 23 degrees of freedom. For ev-
ery SDME, the averages of the SDMEs extracted from
the two separate beam helicity samples are found to
be consistent with each other and the result from the
common fit.

In Fig. 7 one-dimensional angular distributions are
shown for the hydrogen and deuterium data samples,
where the positive-helicity sample is chosen as repre-
sentative. In addition to distributions in cosΘ, φ, and
Φ, the angular distribution in ψ = φ − Φ is shown,
which embodies the entire azimuthal dependence in
the case of SCHC. For each panel, the data are com-
pared with the isotropic input distributions as modi-
fied by instrumental effects such as acceptance, track-
ing resolution, and reconstruction efficiencies, as well
as the one-dimensional projections of the fitted 3-di-
mensional angular distribution. These projections are
clearly in agreement with the data.

6.2 Background Subtraction

Before fitting SDMEs to the (cosΘ,φ, Φ) angular dis-
tributions, the SIDIS background in the exclusive re-
gion is subtracted. This subtraction is performed sep-
arately for each interval in t′, Q2 or x. In a given
(cosΘ,φ, Φ) cell, the number of background events in
the exclusive region is calculated as follows:

N bg
cell = NMC

cell

Ndata
2−20

NMC
2−20

, (48)
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Fig. 7. Angular distributions with common arbitrary normalization for ρ0 meson production and decay. Data points
represent the positive helicity sample of the proton (deuteron) data in the left (right) half of the figure. The dotted lines
represent isotropic input Monte Carlo distributions as modified by the HERMES acceptance, while the dashed lines are
the results of the 23-parameter fit. Here 16 bins are chosen for a more detailed comparison. The data correspond to the
full kinematic region of the analysis.

where the number of SIDIS Monte Carlo events in a
given cell is NMC

cell , while Ndata
2−20 and NMC

2−20 are defined
as in equation (44).

6.3 Systematic Uncertainties

a) Background Subtraction

The systematic uncertainty of the background subtrac-
tion procedure is estimated as the difference between
the SDMEs obtained with and without any background
correction.

b) rhoMC Input Parameters

The SDME extraction procedure starts from isotropic
distributions in cosΘ, φ, and Φ generated by rhoMC,
as explained above. The parameterization of the to-
tal electroproduction cross section in rhoMC is chosen
in the context of a VMD model that incorporates a
propagator-type Q2 dependence, and also contains a
dependence on R(Q2). As the HERMES spectrometer
acceptance depends on Q2, different input parameters
result in slightly different reconstructed angular dis-
tributions. The corresponding systematic uncertainty
of the resulting SDMEs is obtained by varying these
parameters within one standard deviation in the total
uncertainty of the parameters given in Refs. [15,16].

The total systematic uncertainty is obtained by
adding in quadrature the uncertainty from the back-
ground subtraction procedure and that due to the un-
certainty in the rhoMC input parameters, which are
approximately of equal size.

c) Further Systematic Studies

Several further studies using generated and reconstruc-
ted event samples are performed to estimate possible
systematic uncertainties:

i) A consistency check of the extraction method is
performed by using several known sets of SDMEs as
input to the rhoMC [15,16,44] simulation and com-
paring the SDMEs extracted from the simulated data
with those used as input to the rhoMC generator.
First, isotropic angular distributions were simulated,
corresponding to all SDMEs vanishing except r0400 = 1

3 .
Alternatively, events were generated assuming SCHC,
implying that only five unpolarized and two polarized
SDMEs are non-zero, as explained in section 3.7. Fi-
nally, the extracted 23 SDMEs are used as input pa-
rameters. In all cases, good agreement is found be-
tween input and extracted SDMEs at the given level
of statistical accuracy.

ii) Several tests are performed to ensure that the
choice of the (cosΘ,φ, Φ) cell size does not bias the
results of the maximum likelihood procedure. A sam-
ple of about 40000 simulated events with angular de-
pendences determined by the (normally) extracted 23
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SDMEs is fitted after binning the data in several num-
bers of angular cells, varying from 5×5×5 to 12×12×
12. The χ2/d.o.f. calculated between sets of SDMEs
extracted with 8 × 8 × 8 and 12 × 12 × 12 binning is
0.14. Hence the cell size used in the maximum likeli-
hood procedure is not treated as a source of systematic
uncertainty.

iii) Variations of the restrictions on Mπ+π− , t′, and
∆E result in slightly different amounts of SIDIS back-
ground. The resulting systematic uncertainty is much
smaller than that estimated for the background sub-
traction procedure, and hence is neglected.

iv) In the SDME extraction procedure, only the
shape of the 3-dimensional angular distribution mat-
ters. As events in which a radiative photon is emit-
ted with an energy larger than 0.6 GeV are removed
from the analysis by the constraint ∆E < 0.6 GeV,
the impact of radiative effects on the shape of the 3-
dimensional angular distribution is strongly reduced.
Two approaches are used to quantify this effect. First,
the DIFFRAD code is used to calculate the radiative
effects for exclusive ρ0 production [53,54], as was done
also in Refs. [9,12]. As the emission of a real photon by
the positron alters the direction of the virtual photon,
the angle Φ between lepton scattering plane and ρ0

production plane also changes. The effect of a small
variation (< 2.5 %, as suggested in Ref. [54]) of the
shape of the Φ-distribution is studied by re-weighting
the isotropic input angular distribution. The differ-
ence between SDMEs obtained with and without re-
weighting is found to be less than 0.0012 for all SDMEs
(χ2/d.o.f. < 0.1), i.e., radiative effects are negligible.

As an independent cross check, radiative effects on
the extracted SDMEs are studied using a Monte Carlo
simulation of exclusive ρ0 production with events from
the PYTHIA generator [45]. Two statistically inde-
pendent isotropic angular distributions are generated,
with and without the emission of radiative photons. A
set of SDMEs is extracted from the (real) data sample
for each of these isotropic input angular distributions.
The difference between the resulting SDMEs is statis-
tically indistinguishable (χ2/d.o.f. ≤ 0.2).

As a further check we use the extracted 23 SDMEs
as input parameters to rhoMC and compare the shapes
of the simulated distributions with the data. In order
to restrict the comparison to exclusive ρ0 events, prop-
erly normalized SIDIS background distributions from
PYTHIA are subtracted from the data. In the maxi-
mum likelihood fit method, the extraction of SDMEs
only requires simulated event distributions normalized
to the data. The shape comparison reveals good agree-
ment for all variables, some of which are presented in
Fig. 8.
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Fig. 8. Shape comparison of the distributions in W , Q2,
t′ and Pπ+ , the momentum of the π+ from ρ0 decay in the
laboratory system, for the hydrogen data sample (squares).
The shaded areas show rhoMC results using the extracted
23 SDMEs as input for the simulation, normalized to the
data. Background has been subtracted from the data.

7 Results on SDMEs Integrated over the

Entire Kinematic Region

7.1 Classification of SDMEs

The presentation of the extracted SDMEs will be based
on a hierarchy of NPE helicity amplitudes:

|T00| ∼ |T11| ≫ |T01| > |T10| & |T1−1|. (49)

A similar hierarchy was discussed for the first time in
Ref. [26]. In perturbative QCD this is valid at asymp-
totically high Q2. It was experimentally confirmed at
the HERA collider [9–11] and discussed in Refs. [14,
31,33]. In the following it will be shown that it applies
also at Q2 values typical of the HERMES experiment.

The extracted 23 SDMEs are categorized into five
classes according to the hierarchy shown above. Class
A comprises SDMEs dominated by the helicity-conser-
ving amplitudes T00 and T11 which describe the tran-
sitions γ∗L → ρ0

L and γ∗T → ρ0
T , respectively. Class B

contains SDMEs that correspond to the interference of
the above two amplitudes. Class C consists of all those
SDMEs in which the main term contains a contribu-
tion linear in the s-channel helicity non-conserving am-
plitude T01, corresponding to the γ∗T → ρ0

L transition,
except for a term involving r100 for which the T01 contri-
bution is quadratic. The classes D and E are composed
of the SDMEs in which the main terms contain a con-
tribution linear in the small helicity-flip amplitudes
T10 (γ∗L → ρ0

T ) and T1−1 (γ∗−T → ρ0
T ), respectively.

Equations (77-99) in Appendix A show the represen-
tation of all the SDMEs in terms of helicity amplitudes
ordered according to the five classes defined above.
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Table 1. Values of ρ0 SDMEs for proton and deuteron data ordered in classes by horizontal lines according to the
expected hierarchy of helicity amplitudes. Elements rα

ij with α = 3, 7, 8 are polarized. The first uncertainty is statistical,
the second systematic. The statistical significance of the magnitude of each SDME expected to vanish in the case of
SCHC is shown in column three or five as its absolute value in units of standard deviations of its total uncertainty,
denoted as SDME/tot. Similarly, the four bottom rows of the table show deviations from zero of certain combinations
of SDMEs that would thereby violate SCHC and NPE dominance (see text).

proton deuteron

element SDME ±stat ± syst SDME/tot SDME ±stat ± syst SDME/tot

r04
00 0.412 ± 0.010 ± 0.010 0.416 ± 0.007 ± 0.013

r1
1−1 0.246 ± 0.011 ± 0.019 0.247 ± 0.008 ± 0.014

Im r2
1−1 −0.227 ± 0.010 ± 0.012 −0.234 ± 0.008 ± 0.019

Re r5
10 0.161 ± 0.004 ± 0.010 0.165 ± 0.003 ± 0.010

Im r6
10 −0.167 ± 0.003 ± 0.009 −0.156 ± 0.003 ± 0.006

Im r7
10 0.112 ± 0.021 ± 0.011 0.104 ± 0.016 ± 0.004

Re r8
10 0.074 ± 0.019 ± 0.006 0.114 ± 0.014 ± 0.009

Re r04
10 0.031 ± 0.004 ± 0.008 3.5 0.030 ± 0.003 ± 0.008 3.5

Re r1
10 −0.032 ± 0.007 ± 0.012 2.3 −0.020 ± 0.006 ± 0.010 1.7

Im r2
10 0.022 ± 0.007 ± 0.015 1.3 0.014 ± 0.006 ± 0.017 0.8

r5
00 0.109 ± 0.009 ± 0.009 8.7 0.111 ± 0.007 ± 0.008 10.4

r1
00 0.011 ± 0.019 ± 0.008 0.6 −0.038 ± 0.015 ± 0.016 1.7

Im r3
10 −0.017 ± 0.015 ± 0.004 1.1 0.031 ± 0.011 ± 0.003 2.7

r8
00 0.035 ± 0.050 ± 0.010 0.7 0.053 ± 0.038 ± 0.006 1.4

r5
11 −0.01 ± 0.003 ± 0.013 1.2 −0.021 ± 0.003 ± 0.013 1.6

r5
1−1 0.005 ± 0.004 ± 0.006 0.7 0.013 ± 0.003 ± 0.006 1.9

Im r6
1−1 −0.002 ± 0.004 ± 0.007 0.3 −0.007 ± 0.003 ± 0.006 1.0

Im r7
1−1 −0.035 ± 0.030 ± 0.005 1.2 −0.058 ± 0.023 ± 0.009 2.3

r8
11 0.036 ± 0.024 ± 0.001 1.6 0.026 ± 0.018 ± 0.003 1.4

r8
1−1 0.019 ± 0.029 ± 0.005 0.6 −0.066 ± 0.022 ± 0.008 2.8

r04
1−1 −0.011 ± 0.005 ± 0.005 1.5 −0.002 ± 0.004 ± 0.008 0.2

r1
11 −0.025 ± 0.007 ± 0.008 2.3 −0.002 ± 0.006 ± 0.013 0.1

Im r3
1−1 −0.024 ± 0.018 ± 0.001 1.3 −0.004 ± 0.014 ± 0.004 0.3

relation SCHC? SCHC?

r1
1−1 + Im r2

1−1 0.018 ± 0.012 ± 0.011 1.1 0.013 ± 0.009 ± 0.014 0.8

Re r5
10+ Im r6

10 −0.006 ± 0.004 ± 0.001 1.5 0.010 ± 0.003 ± 0.005 1.7

Im r7
10− Re r8

10 0.038 ± 0.029 ± 0.006 1.3 −0.011 ± 0.022 ± 0.006 0.5

relation SCHC and NPE? SCHC and NPE?

1 − r04
00 − 2r1

1−1 0.097 ± 0.017 ± 0.046 2.0 0.091 ± 0.013 ± 0.038 2.3

7.2 Representation of the Integrated Data

Separate maximum likelihood fits to the proton and
deuteron data samples are performed in the entire kine-
matic region: 1 GeV2 < Q2 < 7 GeV2, 3 GeV <
W < 6.3 GeV (corresponding to 0.03 < xB < 0.25),
and 0 GeV2 < −t′ < 0.4 GeV2. The resulting ρ0 me-
son SDMEs rα

λV λ′

V
are listed in Tab. 1 and displayed

in Fig. 9, ordered according to the classes described
above. The statistical uncertainties are larger for the
eight polarized SDMEs (shown in the shaded areas of
the figure) due to the non-unity of the beam polar-
ization and the kinematic suppression factor

√
1 − ǫ

(see (39)). In order to facilitate comparison with a re-
cently introduced new representation of SDMEs [25],
the proton SDMEs in that representation are shown
in Tab. 14 of Appendix E.

In Fig. 9 the SDMEs are shown multiplied by cer-
tain factors in order to allow their comparison at the
level of dominant amplitudes (see (77-99)). For all
classes numerical factors are chosen in such a way
that the coefficient of the dominant terms is equal
to unity. The plotted representatives for the elements
of class A are chosen so that their main terms are
equal to |T11|2/N ; in particular this requires that the
term 1 − r0400 be chosen. The coefficients for class B
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scaled SDME

proton
deuteron

A:  γ *L  →  ρ 0L

γ *T  →  ρ 0T

B: Interference  γ *L  →  ρ 0L  &   γ *T  →  ρ 0T

C:  γ *T  →  ρ 0L

D:  γ *L  →  ρ 0T

E:  γ *-T  →  ρ 0T

Fig. 9. The 23 SDMEs extracted from ρ0 data: proton (squares) and deuteron (circles) in the entire HERMES kinematics
with 〈x〉 = 0.08, 〈Q2〉 = 1.95 GeV2, 〈−t′〉 = 0.13 GeV2. The SDMEs are multiplied by prefactors in order to represent
the normalized leading contribution of the corresponding amplitude (see (77-99)). The inner error bars represent the
statistical uncertainties, while the outer ones indicate the statistical and systematic uncertainties added in quadrature.
SDMEs measured with unpolarized (polarized) beam are displayed in the unshaded (shaded) areas. The vertical dashed
line at zero is indicated for SDMEs expected to be zero under the hypothesis of SCHC.

are chosen to have the main contribution to the plot-
ted representatives for the unpolarized and polarized
SDMEs equal to Re{T11T

∗
00}/N and Im{T11T

∗
00}/N ,

respectively. This corresponds to the general rule that
is applicable to classes B to E: the dominant contribu-
tion of the unpolarized (polarized) element presented
in Fig. 9 is proportional to the real (imaginary) part
of a product of two amplitudes. Class C contains the
main terms T01T

∗
00/N (for r500/

√
2 and r800/

√
2) and

T01T
∗
11/N . The dominant contributions for classes D

and E contain terms T10T
∗
11/N and T1−1T

∗
11/N , re-

spectively.

Given the scaled SDMEs in Fig. 9, it easily can
be seen that the two unpolarized SDMEs of class B
have large values, similar to those of class A. This
suggests the presence of a substantial interference be-
tween the two dominant amplitudes T00 and T11. The
two polarized class B SDMEs are significantly non-
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zero for proton and deuteron as well. It is also seen
that the values of elements in class C that contain
the dominant term T01T

∗
11 are similar for the unpo-

larized SDMEs (Re{r0410}, Re{r110}, Im{r210}). Those
unpolarized class C elements measured with good ac-
curacy, Re{r0410} and r500, are much smaller than the
class B SDMEs, whereas the unpolarized class C ele-
ments are larger than the unpolarized class D and class
E SDMEs. This shows that the anticipated hierarchy
is supported by the data. For class D SDMEs, slightly
positive (negative) values are observed in the polarized
(unpolarized) case. Finally, values of class E SDMEs
for the proton target tend to deviate from zero, while
those for the deuteron ones are consistent with zero.

We note that no significant difference is found be-
tween the sets of SDMEs for proton and deuteron,
as a χ2/d.o.f. = 22.5/23 is obtained taking into ac-
count the total uncertainties. Hence there appears to
be no indication of significant contributions of sec-
ondary reggeons with isospin I = 1 and natural parity.

7.3 Test of the SCHC Hypothesis

As explained in section 3.7, only the following seven
SDMEs are not restricted to be zero in the case of
s-channel helicity conservation: r0400, r

1
1−1, Im{r21−1},

Re{r510}, Im{r610} and Im{r710}, Re{r810}. All other
SDMEs are required by SCHC to be zero. The mag-
nitudes of their measured offsets from zero, expressed
in units of the standard deviation of their uncertainty,
are shown in one of two separate columns of Tab. 1,
next to the respective SDME. Several elements are in-
consistent with the hypothesis of SCHC, in particular
several members of class C.

The SDME r500 is observed to be non-zero at the
level of nine (ten) standard deviations in the total
uncertainty for the proton (deuteron) result, proving
s-channel helicity non-conservation. This was already
observed earlier by the HERA collider experiments [9,
11] at a lower significance level, and with high sig-
nificance very recently [10]. For the first time, HER-
MES observes s-channel helicity non-conservation also
in other class C SDMEs, in particular Re{r0410}.

The polarized elements r800 and Im{r310}, related
to the terms Im{T01T

∗
00} and Im{T01T

∗
11} respectively

(89,90), are extracted using a longitudinally polarized
lepton beam for the first time. Both elements are con-
sistent with zero (Figs. 9, 13) within the uncertainties.

The relations imposed by the hypothesis of SCHC
(40-42) are satisfied within about one standard devia-
tion of the total uncertainty, as can be seen from the
corresponding rows of Tab. 1. The sensitivity of these
relations to SCHC is low. In the case of the relation
(40) only the contributions of small double-helicity-flip
amplitudes (see (78,79) ) violate SCHC. For the rela-
tions (41-42), equations (80-83) show that the largest
SCHC amplitude T00 is multiplied by the smallest T1−1

amplitude in the terms that violate SCHC. The re-
lation corresponding to the combined hypotheses of
SCHC and NPE dominance (43) is marginally vio-
lated by two standard deviations in the total uncer-
tainty. In evaluating the uncertainties of these rela-
tions, correlations between the corresponding elements
(see Tabs. 15,16), are taken into account.

7.4 Phase Difference between T11 and T00

The phase difference δ between the amplitudes T11 and
T00 can be evaluated as follows:

cos δ =
2
√
ǫ(Re{r510} − Im{r610})√

r0400(1 − r0400 + r11−1 − Im{r21−1})
. (50)

This results in |δ| = 26.4± 2.3stat ± 4.9syst degrees for
the proton and |δ| = 29.3±1.6stat±3.6syst degrees for
the deuteron (see Fig. 12). Using polarized SDMEs,
also the sign of δ can be determined:

sin δ =
2
√
ǫ(Re{r810} + Im{r710})√

r0400(1 − r0400 + r11−1 − Im{r21−1})
. (51)

Equations (50) and (51) are derived in Appendix B.
Second order contributions of spin-flip amplitudes are
neglected in obtaining these formulae.

Using (51) it is determined, for the first time, that
the sign of δ is positive: δ = 30.6 ± 5.0stat ± 2.4syst

degrees for the proton and δ = 36.3 ± 3.9stat ± 1.7syst

for the deuteron. These values are consistent with each
other and their magnitudes are in agreement with the
results obtained with (50) for cos δ.

We note that in the GPD-based model of Ref. [35],
the phase difference between the amplitudes T11 and
T00 is found to have a value of about 3 degrees. This
appears to be inconsistent with the HERMES results
and also, to a lesser extent, with the H1 results [11];
the two experimental results agree within their total
uncertainties.

8 The Q2 and t′ Dependences of the

SDMEs

In the following, the Q2 dependences are presented in
four bins, where the first bin is defined by 0.5 GeV2 <
Q2 < 1 GeV2 with 〈Q2〉 = 0.83 GeV2. For the t′ depen-
dences, also shown in four bins, only data with Q2 > 1
GeV2 are included. The average value of t′ is almost
independent of Q2 and W .

8.1 Class A: Dominant Transitions γ∗
L
→ ρ0

L
and

γ∗
T
→ ρ0

T

Class A comprises SDMEs corresponding to the dom-
inant transitions, γ∗T → ρ0

T and γ∗L → ρ0
L, described
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Fig. 10. Q2 and t′ dependences of class A SDMEs describing the dominant transitions γ∗

L → ρ0
L and γ∗

T → ρ0
T . Filled

squares (circles) correspond to proton (deuteron) data. Total uncertainties are depicted, calculated as statistical and
systematic uncertainties combined in quadrature. Deuterium data points are presented with a small horizontal offset
here and in Figs. (11-18) to improve their visibility.
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Fig. 12. The Q2 dependence of the phase difference δ be-
tween T11 and T00 amplitudes calculated according to (50)
for the proton (filled squares) and deuteron (filled circles)
data. The values of δ, for yields integrated over the range
1 GeV2 < Q2 < 7 GeV2, are shown as open symbols. The
inner (outer) bars represent the statistical (total) uncer-
tainty.

by the amplitudes T11 and T00. The Q2 and t′ de-
pendences for the class A SDMEs 1 − r0400, r

1
1−1, and

Im{r21−1} are shown in Fig. 10. The three elements
exhibit somewhat similar Q2 dependences. They are
found to be approximately constant over the measured
t′ range, as also observed by ZEUS [10] for r0400 at av-
erage Q2 values of 3 and 10 GeV2. Such a t′ indepen-
dence indicates similar t′-slopes for longitudinal and
transverse components of the vector meson production
cross section.

We note that there is good agreement between the
highest Q2 points of the HERMES proton data and
the GPD-based model calculations of Ref. [35].

8.2 Class B: Interference of γ∗
L
→ ρ0

L
and γ∗

T
→ ρ0

T

Transitions

Class B comprises SDMEs describing the interference
of the dominant transitions γ∗T → ρ0

T and γ∗L → ρ0
L,

i.e., those corresponding to a product of the amplitude
T11 and the complex conjugate of T00. Polarized (un-
polarized) SDMEs correspond to the real (imaginary)
part of this product.

Figure 11 shows the Q2 and t′ dependence of these
SDMEs. It is apparent that the SCHC relations (41)
and (42) are approximately fulfilled over the mea-
sured kinematic ranges. Considering (80-83), this im-
plies that contributions of single- and double-helicity-
flip amplitudes are small.

An indication of a Q2 dependence of the phase
difference δ between the amplitudes T11 and T00 (see
(50)) is presented in Fig. 12. The result of a fit with a
linearQ2 dependence has a χ2/d.o.f. = 1.41/2 (1.42/2)
for the proton (deuteron) data, which is smaller than
the fit result with no Q2 dependence: χ2/d.o.f. =
4.52/3 (4.38/3). Note that at the lowest Q2, the value
of δ has the largest systematic uncertainty due to the
rapidly falling acceptance of the HERMES spectrome-
ter. No t′ dependence of δ is observed, for either target.

8.3 Class C: Helicity-Flip Transition γ∗
T
→ ρ0

L

Class C consists of all those SDMEs with the main
term containing a product of the s-channel helicity vi-
olating amplitude T01 describing the helicity-flip tran-
sition γ∗T → ρ0

L, and the complex conjugate of T00,
T11 or T01, (see (84-90)). No clear Q2 dependence is
observed for class C SDMEs (see Fig. 13).

As suggested by general properties of helicity-flip
kinematics at low t′ values, a dependence on

√
−t′ that

monotonically increases from zero is expected for the
amplitude T01 [25]. This is consistent with the mea-
sured SDMEs containing this amplitude, as is clearly
seen for r500 and Re{r0410} in the third row of Fig. 13.

8.4 Class D: Helicity-Flip Transition γ∗
L
→ ρ0

T

Class D consists of SDMEs for which the main terms
in (91-96) contain a product of the small helicity-flip
amplitude T10 with the complex conjugate of T11. Un-
polarized (polarized) SDMEs represent the real (imag-
inary) part of this product. Correspondingly, they de-
scribe the interference of the helicity-flip transition
γ∗L → ρ0

T with the helicity-conserving transition γ∗T →
ρ0

T . Figure 14 shows that the class D SDMEs depends
only weakly on Q2 and t′, and are consistent with zero
as −t′ → 0, as expected.

8.5 Class E: Double Helicity-Flip Transition
γ∗−T

→ ρ0
T

Class E consists of the SDMEs with the main term
describing the interference of the transition γ∗−T → ρ0

T

with γ∗T → ρ0
T . This corresponds to a product of the

double spin-flip amplitude T1−1 with the complex con-
jugate of the helicity-conserving amplitude T11. Unpo-
larized (polarized) SDMEs represent the real (imag-
inary) part of this product. Their Q2 and t′ depen-
dences are presented in Fig. 15, where it can be seen
that the class D SDMEs depend only weakly on Q2

and t′, and are consistent with zero as −t′ → 0, as
expected.
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T → ρ0
L

and one of the dominant helicity-conserving transition. Filled squares (circles) correspond to proton (deuteron) data.
Total uncertainties are depicted, calculated as statistical and systematic uncertainties combined in quadrature.
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are depicted, calculated as statistical and systematic uncertainties combined in quadrature.
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Fig. 15. Q2 and t′ dependences of the class E SDMEs describing the interference of the double-helicity-flip transition
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9 Unnatural-Parity Exchange

For ρ0 production on the proton, or incoherent pro-
duction on the deuteron, the existence of unnatural-
parity exchange can be tested by evaluating the fol-
lowing combinations of SDMEs:

u1 = 1 − r0400 + 2r041−1 − 2r111 − 2r11−1, (52)

u2 = r511 + r51−1, (53)

u3 = r811 + r81−1. (54)

If UPE is absent, all three combinations are expected
to vanish without resort to SCHC. A non-zero result
for

u1 =
∑̃

{4ǫ|U10|2 + 2|U11 + U−11|2}/N (55)

indicates the existence of UPE contributions, while the
value for

u2 + iu3 =
√

2
∑̃

{(U11 + U−11)
∗U10}/N (56)

can vanish despite the existence of UPE contributions.
Such a behavior can be explained if a hierarchy exists
also for unnatural-parity-exchange amplitudes:

∑̃
|U11|2 ≫

∑̃
|U10|2,

∑̃
|U01|2,

∑̃
|U−11|2. (57)

This hierarchy is analogous to (49) and can be assumed
to be a general property of UPE amplitudes.

The proton result u1 = 0.125±0.021stat±0.050syst

for the entire HERMES kinematic region differs from
zero at a level of more than two standard deviations
in the total uncertainty, suggesting the existence of
unnatural-parity-exchange contributions. The deuteron
result u1 = 0.091 ± 0.016stat ± 0.046syst also exceeds
zero, but with smaller significance. Note that for both
targets, systematic uncertainties strongly dominate.
The dependences on Q2 and t′ of u1 for the proton
and deuteron are presented in Fig. 16 and Tab. 10.
Although the uncertainties are large due to the large
number of SDMEs involved in relation (52), all mea-
sured values of u1 are positive over the whole kinematic
range. For the calculation of uncertainties in (52), the
correlations between SDMEs are taken into account
(see Tabs. 15,16).

For coherent ρ0 production on the deuteron (iso-
spin zero), only isoscalar meson exchange is allowed;
hence there are no contributions from π, a1, or b1 ex-
change.

The incoherent contribution to the cross section on
the neutron is expected to have an unnatural-parity-
exchange contribution similar to that for the proton.
The resulting value of u1 for the deuteron is hence
expected to be smaller than that for the proton due
to the admixture of coherent scattering. A possible
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indication of this behavior is observed in the lowest
t′ bin of the right section of Fig. 16, where u1 of the
proton exceeds that of the deuteron.

The HERMES results on u1, u2, and u3 are pre-
sented in Fig. 17 and in the top section of Tab. 11.
The value of u3 is measured here for the first time. The
combination of proton and deuteron data shows the ex-
istence of UPE amplitudes on the level of almost three

standard deviations in the total uncertainty: up+d
1 =

0.106 ± 0.036. In addition, results on u1 and u2 from
other experiments are given in Fig. 17 and in the bot-
tom panel of Tab. 11. While u2 is measured to be com-
patible with zero by all experiments, u1 is found to be
consistent with zero only for high values of W , as ex-
pected for π, a1, and b1 exchanges. For low values of
W , the averaged result from the older measurements,
ulowW

1 = 0.70 ± 0.16, is in agreement with the conclu-
sion that UPE amplitudes exist at HERMES kinemat-
ics.

It is worth recalling that the existence of unnatural-
parity exchange in ρ0production by a virtual photon,
with longitudinally polarized beam and target, results
in a double-spin asymmetry [21]. At HERMES [17] this
asymmetry was found to be non-zero for the proton,
with a significance of 1.7 standard deviations of the
total uncertainty; the asymmetry for the deuteron was
smaller, as discussed in Refs. [14,21].

We note that there is no agreement between the
HERMES measured value of u1 at Q2 = 3 GeV2 and
values of u1 calculated in variants of a GPD-based
model [35].

10 Contribution of the Helicity-Flip and

UPE Amplitudes to the Full Cross Section

Non-conservation of s-channel helicity arises from the
existence of non-zero helicity-single-flip and/or helicity-
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Fig. 17. Average values of u1, u2 and u3 calculated ac-
cording to (52-54) from HERMES proton (filled squares)
and deuteron (filled circles) SDMEs are shown together
with the values calculated from published SDMEs from
DESY [37], SLAC’79 [55], SLAC’74 [56], ZEUS BPS [9],
ZEUS DIS [10] and H1 [11]. For HERMES (other exper-
iments) systematic uncertainties are combined in quadra-
ture with (without) accounting for correlations between the
SDMEs. The HERMES deuteron and SLAC’74 data points
are presented with a small horizontal offset to improve their
visibility.

double-flip amplitudes. It can be quantified by mea-
suring ratios τij , of helicity-flip amplitudes Tij to the
square root of the sum of all amplitudes squared,

τij =
|Tij |√
N
, (58)

with N = ǫNL + NT as defined in Section 3. The
squared ratio τ2

ij represents the fractional contribution
from the amplitude Tij to the full cross section. The
τij ’s can be expressed in terms of SDMEs, as shown in
Appendix C.

For the helicity-flip amplitude T01, describing the
transition γ∗T → ρ0

L, the quantity τ01 is approximated
as:

τ01 ≈ √
ǫ

√
(r500)

2 + (r800)
2

√
2r0400

. (59)

For the helicity-flip amplitude T10, describing the tran-
sition γ∗L → ρ0

T , the quantity τ10 is given by

τ10 ≈

√
(r511 + Im{r61−1})2 + (Im{r71−1} − r811)

2

√
2(r11−1 − Im{r21−1})

, (60)
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and for the helicity-double-flip amplitude T1−1, de-
scribing the transition γ∗−T → ρ0

T , the quantity τ1−1 is
given by

τ1−1 ≈

√
(r111)

2 + (Im{r31−1})2√
r11−1 − Im{r21−1}

. (61)

The resulting τij values for proton and deuteron data
are presented in Fig. 18 and in the top section of
Tab. 12 for the entire HERMES kinematic region. Non-
conservation of s-channel helicity is clearly observed
for the amplitude T01 and, for the first time, for the
amplitude T10, although with somewhat lower statis-
tical significance.

Polarized SDMEs cannot be determined from col-
lider data, as the collider kinematic conditions imply
ǫ ≈ 1. According to (39), this suppresses the contribu-
tion of polarized SDMEs to WL.

In Ref. [9] the amplitude ratios are approximated
as follows:

τ̃01 ≈ r500√
2r0400

, (62)

τ̃10 ≈ Re{r0410} + Re{r110}√
r0400

, (63)

τ̃1−1 ≈ |r111|√
2r11−1

. (64)

In contrast to (59-61), these expressions rely on the as-
sumption of zero phase difference between the consid-
ered amplitude (T01, T10, or T1−1) and the correspond-
ing dominant amplitude (T00 or T11). Results for the
quantities τ̃ij from ZEUS and other experiments, cal-
culated from unpolarized proton SDMEs, are shown in
Fig. 18 and in the bottom section of Tab. 12.

The combined effect of s-channel helicity non-con-
servation and of a contribution of UPE to the full cross
section can be estimated according to (32,33, 27,28) as
follows. First note that

dσfull

dt
≈ fN0

(
1 + τ2

T + τ2
UPE

)
, (65)

where

N0 = ǫ|T00|2 + |T11|2 (66)

contains only the contributions of s-channel helicity
conserving NPE amplitudes. The s-channel helicity
non-conserving fractional contribution of NPE amp-
litudes to the cross section is defined as

τ2
T =

(
2ǫ|T10|2 + |T01|2 + |T1−1|2

)
/N0

≈ 2ǫτ2
10 + τ2

01 + τ2
1−1. (67)

The HERMES result for τ2
T is 0.025 ± 0.003stat ±

0.003syst and 0.028± 0.002stat ± 0.002syst for the pro-
ton and deuteron, respectively.

Correspondingly, the UPE contribution is defined
as:

τ2
UPE =

∑̃(
2ǫ|U10|2 + |U01|2 + |U1−1|2 + |U11|2

)
/N0. (68)

Because the contributions of amplitudes U01 and U1−1

to (68) are negligibly small, τ2
UPE and u1 (55) can be

approximately related to one another as: τ2
UPE ≈ u1/2.

Accordingly, the first determination of the fractional
UPE contribution to the full cross section τ2

UPE is
0.063 ± 0.011stat ± 0.025syst and 0.046 ± 0.008stat ±
0.023syst for the proton and deuteron, respectively.

11 Longitudinal-to-Transverse Cross

Section Ratio

In principle the longitudinal-to-transverse cross sec-
tion ratio R (34) can experimentally be determined
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directly from the two cross sections if they can be ex-
tracted separately from the data using, e.g., the Rosen-
bluth decomposition technique [57]. For given values
of Q2 and W (or Q2 and xB), this requires data sets
at different values of ǫ, so that measurements at dif-
ferent beam energies are necessary [23]. No data on
vector meson production using such a decomposition
have been published.

11.1 Approximations for R

A common approximation to the ratio R is experimen-
tally determined from the measured SDME r0400:

R04 =
1

ǫ

r0400

1 − r0400

. (69)

The quantity R04 represents the ratio of cross sections
for longitudinal and transverse ρ0 polarization, and it
is not identical to the true R that represents the ratio
of the cross sections with respect to the polarization
of the virtual photon. The relation between R04 and
R is obtained by comparing (69,77) with (34,28,27):

R = R04 − η(1 + ǫR04)

ǫ(1 + η)
, (70)

with

η =
(1 + ǫR04)

N

×
∑̃

{|T01|2 + |U01|2 − 2ǫ(|T10|2 + |U10|2)} (71)

(see Appendix D). In the case of SCHC, η = 0 and
R04 = R. The quantity R04 can be either smaller or
larger than R, depending on the sign of the small pa-
rameter η. The latter can be calculated from data by
neglecting the small contributions of the helicity-flip
UPE amplitudes U10, U01 in (71):

η ≈ (1 + ǫR04)(τ2
01 − 2ǫτ2

10) , (72)

where τ01 and τ10 are given in (59-60).
Regge phenomenology suggests that contributions

of unnatural-parity exchange are more significant at
the lower energies typical of this experiment, and de-
crease at collider energies. In order to allow a com-
parison of HERMES results on R with those at high
energy and also with GPD-based calculations, the ra-
tio RNPE is determined from R04 by subtracting the
contributions of all UPE amplitudes. The dependence
of the difference ∆RUPE = R04 −RNPE on |Uij |2 can
be determined in a linear approximation as

∆RUPE =
∑

ij

∂R04

∂|Uij |2
|Uij |2 .
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Fig. 19. Q2 dependence of the longitudinal-to-transverse
cross section ratio measured at HERMES. Results from
proton (deuteron) data are shown in the left (right) panel.
Filled symbols represent the value of R04 calculated from
r04
00 (69), open symbols correspond to the true value of

R calculated according to (70,72), and crosses (diamonds)
represent RNPE (75). Total uncertainties are shown, cal-
culated by combining the statistical and systematic uncer-
tainties in quadrature. The data points for R and RNPE

are presented with a small horizontal offset to improve their
visibility.

Assuming the hierarchy (57) of UPE amplitudes, this
can be approximated by retaining only U11:

∆RUPE ≈ ∂R04

∂|U11|2
|U11|2 . (73)

According to (70) and (71), R04 can be approximated
by R = NL/NT , which yields, along with (27,28),

∆RUPE ≈ −NL

N 2
T

∑̃
|U11|2

= −R ·
∑̃|U11|2
NT + ǫNL

· NT + ǫNL

NT

≈ −R04 · u1

2
· (1 + ǫR04) . (74)

Here u1 ≈ 2
∑̃|U11|2/(NT + ǫNL) is used instead of

(55). The final approximate formula forRNPE = R04−
∆RUPE is

RNPE ≈ R04[1 +
u1

2
(1 + ǫR04)] . (75)

11.2 HERMES Results on R

Evaluations of R from HERMES data are performed
for the entire interval 0 GeV2 < −t′ < 0.4 GeV2.
The Q2 dependences of the quantities R04 (69) and
R (70,72) are presented in Fig. 19. In the HERMES
kinematic conditions, at ǫ ≈ 0.8, the value of η is about
0.1 (−0.1) for the proton (deuteron), and the magni-
tude of the difference between R and R04 is small, of
the order of 0.1.
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functions are shown as a shaded band [35].

In section 10 it was shown that by analyzing the
amplitudes that comprise the SDMEs, a statistically
significant, non-zero UPE contribution to the cross
section exists. At the intermediate energy of the HER-
MES experiment this contribution is small. If it is
caused by exchange of π, a1, or b1, this contribution
would be negligible at higher energies [8]. In order to
compare the HERMES results on R with those of ex-
periments at higher energy, it is appropriate to correct
R04 for the UPE contribution and considerRNPE . The
value of ∆RUPE is about −0.11 (−0.08) for the pro-
ton (deuteron) at HERMES kinematics. The resulting
values of RNPE are shown in Fig. 19 and Tab. 13.

11.3 Comparison to World Data and Models

Results for R from different experiments can be com-
pared only if either R is independent of t′, or the t′ de-
pendences of the cross sections dσL

dt and dσT

dt and the t′

intervals of the measurements of R are the same. The
t′ dependence of R is determined essentially by the t′

dependence of the SDME r0400 (see (77)), which is found
to be approximately flat in t′ both at HERMES (see
Fig. 10) and at H1 [11] and ZEUS [10] kinematics. For
this case, the ratio of the total cross sections coincides
with the ratio of the cross sections that are differential
in t (see (34)).

The left panel of Fig. 20 shows HERMES results
on the Q2 dependence of R04, as measured on the pro-
ton, in comparison to world data. Given the experi-
mental uncertainties, there is no discrepancy with the
data at lower energies from CLAS [58,59] and COR-
NELL [60]. The HERMES data at intermediate en-
ergies are not expected to agree exactly with those
at high energies because of the UPE contributions ob-
served in the HERMES data, as discussed in sections 9
and 10. We note that SCHC violating amplitudes are
also observed in the new CLAS data [59]. Additional
reasons may be the importance of valence-quark ex-
change for NPE amplitudes and also a generally differ-
ent W dependence of the longitudinal and transverse
cross sections, as recently discussed in Ref. [35] in the
context of a GPD-based model.

The right panel of Fig. 20 presents the HERMES
results on the longitudinal-to-transverse cross section
ratio RNPE , which is corrected for the UPE contribu-
tions shown in the previous section to be of substantial
size at intermediate energy. The HERMES data are
compared to the recent high energy data on R04 from
ZEUS [10], for which the UPE contribution is expected
to be strongly suppressed.

In order to investigate a possible W dependence of
the longitudinal-to-transverse cross section ratio, the
HERMES and ZEUS data are fitted separately to a
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Q2 dependence suggested by VMD models [2,7,62]:

R(Q2) = c0

(
Q2

M2
V

)c1

, (76)

where c0 and c1 are free parameters and MV is the
mass of the ρ0 meson. The fit results are c0 = 0.56 ±
0.08, c1 = 0.47 ± 0.12 for HERMES and c0 = 0.69 ±
0.22, c1 = 0.59±0.15 for ZEUS, with χ2/d.o.f. = 0.45
and 0.15 respectively. These χ2 values indicate that
the fits are dominated by systematic uncertainties.

A W dependence of the Q2 slope is consistent with
recent calculations using a GPD-based model [35]. We
note the agreement of these calculations performed at
W = 5 GeV for Q2 values down to 3 GeV2 (see dashed
curve in Fig. 20) with the highest Q2 = 3 GeV2 point
of HERMES. Uncertainties in the model calculations
originating from uncertainties in the parton distribu-
tions employed are shown as a shaded band superim-
posed on the curve.

12 Summary

HERMES has studied exclusive ρ0 production on the
proton and deuteron at intermediate energies (〈W 〉 =
4.8 GeV), at the average values of 〈Q2〉 = 1.95 GeV2,
〈−t′〉 = 0.13 GeV2, and 〈xB〉 = 0.08, using polarized
beams and unpolarized targets.

By performing a maximum likelihood fit, fifteen
unpolarized SDMEs and, for the first time, eight po-
larized SDMEs are obtained. The measured SDMEs
are grouped according to their theoretically expected
hierarchy. This facilitates the investigation of the rela-
tive importance of various helicity amplitudes describ-
ing different γ∗ → ρ0 transitions. Within the given
experimental uncertainties, the expected hierarchy of
relative sizes of helicity amplitudes is observed.

Non-zero values are observed for the two helicity-
flip amplitudes T01 and T10, indicating a small but
statistically significant deviation from the hypothesis
of s-channel helicity conservation.

The phase difference between the helicity-conser-
ving amplitudes T11 and T00 is confirmed to be signif-
icantly non-zero and is also seen to have a possible Q2

dependence. For the first time, the sign of the phase
difference is determined using the polarized SDMEs.

The kinematic dependences of all 23 SDMEs are
measured for both hydrogen and deuterium targets.
Clear dependences on Q2 and t′ are observed for cer-
tain SDMEs. No significant difference between proton
and deuteron results is seen.

The evaluation of certain linear combinations of
SDMEs provides an indication that at the interme-
diate energy of the HERMES experiment, contribu-
tions of unnatural-parity-exchange amplitudes exist.
Such amplitudes are naturally generated by a quark-
exchange mechanism.

In order to determine the longitudinal-to-
transverse cross section ratio with respect to the
polarization of the virtual photon, an approximation
R04 to the ratio R of the cross sections for longitudinal
and transverse ρ0 polarizations is calculated from the
SDME r0400 as a function of Q2. The results obtained
for other SDMEs permit us to improve this approx-
imation of R by taking into account transitions of
natural parity that do not conserve s-channel helicity.
In order to facilitate comparison with high-energy
collider data, a correction is applied to R04 to exclude
contributions from unnatural-parity exchange. The
comparison of the Q2 dependences of R at low and
high values of W suggests a possible W dependence
of the ratio.
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Appendix A. The 23 Spin-Density Matrix

Elements Expressed in Terms of Helicity

Amplitudes

The basic expressions for the 23 spin density matrix el-
ements measurable with a polarized lepton beam and
an unpolarized target, ordered according to the ex-
pected hierarchy of amplitudes, are given in (77)–(99).
(COMMENT FOR THE EDITORS: these formulae
appear on the next page).

Appendix B. Derivation of Formulae for cos δ

and sin δ

Neglecting small contributions of the products of spin-
flip amplitudes T10T

∗
01 and U10U

∗
01 in (80)-(83) we ob-
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A : γ∗

L → ρ0
L and γ∗

T → ρ0
T

r04
00 =

gX{ǫ|T00|2 + |T01|2 + |U01|2/}/N , (77)

r1
1−1 =

1

2

gX{|T11|2 + |T1−1|2 − |U11|2 − |U1−1|2}/N , (78)

Im{r2
1−1} =

1

2

gX{−|T11|2 + |T1−1|2 + |U11|2 − |U1−1|2}/N , (79)

B : interference of γ∗

L → ρ0
L and γ∗

T → ρ0
T

Re{r5
10} =

1√
8

gX
Re{2T10T

∗

01 + (T11 − T1−1)T
∗

00}/N , (80)

Im{r6
10} =

1√
8

gX
Re{2U10U

∗

01 − (T11 + T1−1)T
∗

00}/N , (81)

Im{r7
10} =

1√
8

gX
Im{2U10U

∗

01 + (T11 + T1−1)T
∗

00}/N , (82)

Re{r8
10} =

1√
8

gX
Im{−2T10T

∗

01 + (T11 − T1−1)T
∗

00}/N , (83)

C : γ∗

T → ρ0
L

Re{r04
10} =

gX
Re{ǫT10T

∗

00 +
1

2
T01(T11 − T1−1)

∗ +
1

2
U01(U11 + U1−1)

∗}/N , (84)

Re{r1
10} =

1

2

gX
Re{−T01(T11 − T1−1)

∗ + U01(U11 + U1−1)
∗}/N , (85)

Im{r2
10} =

1

2

gX
Re{T01(T11 + T1−1)

∗ − U01(U11 − U1−1)
∗}/N , (86)

r5
00 =

√
2

gX
Re{T01T

∗

00}/N , (87)

r1
00 =

gX{−|T01|2 + |U01|2}/N , (88)

Im{r3
10} = −1

2

gX
Im{T01(T11 + T1−1)

∗ + U01(U11 − U1−1)
∗}/N , (89)

r8
00 =

√
2

gX
Im{T01T

∗

00}/N , (90)

D : γ∗

L → ρ0
T

r5
11 =

1√
2

gX
Re{T10(T11 − T1−1)

∗ + U10(U11 − U1−1)
∗}/N , (91)

r5
1−1 =

1√
2

gX
Re{−T10(T11 − T1−1)

∗ + U10(U11 − U1−1)
∗}/N , (92)

Im{r6
1−1} =

1√
2

gX
Re{T10(T11 + T1−1)

∗ − U10(U11 + U1−1)
∗}/N , (93)

Im{r7
1−1} =

1√
2

gX
Im{T10(T11 + T1−1)

∗ − U10(U11 + U1−1)
∗}/N , (94)

r8
11 = − 1√

2

gX
Im{T10(T11 − T1−1)

∗ + U10(U11 − U1−1)
∗}/N , (95)

r8
1−1 =

1√
2

gX
Im{T10(T11 − T1−1)

∗ − U10(U11 − U1−1)
∗}/N , (96)

E : γ∗

−T → ρ0
T

r04
1−1 =

gX
Re{−ǫ|T10|2 + ǫ|U10|2 + T1−1T

∗

11 − U1−1U
∗

11}/N , (97)

r1
11 =

gX
Re{T1−1T

∗

11 + U1−1U
∗

11}/N , (98)

Im{r3
1−1} = −gX

Im{T1−1T
∗

11 − U1−1U
∗

11}/N , (99)
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tain the approximate relations:

√
2(Re{r510} − Im{r610}) ≈ Re(T11T

∗
00)/N

= |T11||T00| cos δ/N , (100)√
2(Re{r810} + Im{r710}) ≈ Im(T11T

∗
00)/N

= |T11||T00| sin δ/N . (101)

Neglecting |T01|2 and |U01|2 in the numerator in rela-
tion (77) we get

r0400/ǫ ≈ |T00|2/N . (102)

Recalling the formulae (27), (28), and (26) for N , we
obtain from (77) the approximate relation

1 − r0400 ≈
∑̃[

|T11|2 + |U11|2
]
/N (103)

if we neglect small contributions of spin-flip amplitudes
in the numerator of (103). As seen from relation (103)
the difference 1 − r0400 contains |U11|2; to cancel this
contribution, the difference of two SDMEs defined by
(78) and (79) is considered:

r11−1 − Im{r21−1} =
∑̃[

|T11|2 − |U11|2
]
/N . (104)

Adding (103) and (104) together the relation

(1 − r0400 + r11−1 − Im{r21−1})/2 ≈ |T11|2/N (105)

is obtained. Dividing (100) and (101) by the square
root of the product of (102) and (105), formulae (50)
and (51) are obtained respectively.

Appendix C. Derivation of Formula for τ10

Here we derive the formula for τ10 only; formu-
lae for τ01 and τ1−1 can be derived in an analo-
gous way. If we retain only linear contributions of
small s-channel helicity-flip amplitudes in the basic
formulae for SDMEs (77)-(99), neglecting unnatural-
parity-exchange contributions and bilinear products of
helicity-flip amplitudes we obtain:

r0400 = ǫ|T00|2/N0 , (106)

Re{r0410} = Re{ǫT10T
∗
00 +

1

2
T01T

∗
11}/N0 , (107)

Re{r110} = −1

2
Re{T01T

∗
11}/N0 , (108)

r11−1 = −Im{r21−1} =
1

2
|T11|2/N0 , (109)

r511 = Im{r61−1} =
1√
2
Re{T10T

∗
11}/N0 , (110)

Im{r71−1} = −r811 =
1√
2
Im{T10T

∗
11}/N0 , (111)

where N0 = ǫ|T00|2 + |T11|2 (see (66)).
The parameter τ̃10 was defined in [9] by the relation

τ̃10 = |T10|/
√

|T00|2 + |T11|2 (112)

and estimated from (106,107,108) with the formula

τ̃10 ≈ Re{r0410} + Re{r110}√
r0400

=
|T10| cos δ10√

|T00|2 + |T11|2/ǫ
(113)

where δ10 = arg(T10) − arg(T00). Comparison of
(112) and (113) shows that they are equal to each other
if ǫ ≈ 1 and δ10 ≈ 0.

Instead of (113) we derive a formula which is ap-
plicable for any values of δ10 and ǫ. Combining (110)
and (111), we obtain

(r511 + Im{r61−1})2 + (Im{r71−1} − r811)
2

=
2

N 2
0

[
(Re{T10T

∗
11})2 + (Im{T10T

∗
11})2

]

=
2

N 2
0

|T10|2|T11|2. (114)

Dividing (114) by 2r11−1 − 2Im{r21−1} = 2|T11|2/N0

(see (109)) we get the final approximate formula

τ10 ≈ |T10|/
√

N0

≈

√
(r511 + Im{r61−1})2 + (Im{r71−1} − r811)

2

√
2(r11−1 − Im{r21−1})

.

(115)

Since N0 = N within the approximation under consid-
eration, formula (115) corresponds to definition (58) of
τ10. In the case ǫ = 1, which was considered in Ref. [9],
the estimate (115) for τ10 coincides with the definition
given in (112).

Appendix D. Derivation of Relations

between R04 and R

From (69,77,26) it follows that

ǫR04 =

∑̃{ǫ|T00|2 + |T01|2 + |U01|2}
NT + ǫNL − ∑̃{ǫ|T00|2 + |T01|2 + |U01|2}

=

ǫNL +
∑̃{−2ǫ(|T10|2 + |U10|2) + |T01|2 + |U01|2}

NT − ∑̃{−2ǫ(|T10|2 + |U10|2) + |T01|2 + |U01|2}
,

(116)

where in the second step we have used the formula for
NL (28) for the transformation of (116). Dividing both
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the numerator and denominator in (116) by NT and
remembering the definition (34) of R we get

ǫR04 =
ǫR+ ζ

1 − ζ
(117)

with

ζ =
∑̃

{−2ǫ(|T10|2 + |U10|2) + |T01|2 + |U01|2}/NT

=
η(1 + ǫR)

1 + ǫR04
. (118)

The last relation follows from comparison of (118) and
the definition (71) of η. Equation (117) can be easily
rewritten in the form

R = R04 − ζ

ǫ
(1 + ǫR04) (119)

which is equivalent to (70) if we take into account the
relation (118) between η and ζ.

Appendix E. Kinematic Intervals, Mean Val-

ues for Kinematic Variables and SDMEs, for

Proton and Deuteron

The resulting SDMEs with statistical and systematic
uncertainties are presented below in tabular form for
hydrogen and deuterium targets. First, in Tab. 2 the
mean kinematic values are presented for the entire
kinematic region of the measurement and for each bin
used in the Q2, t′ and xB dependences. In Tabs. 3,
4, 5 (6, 7, 8) the results of the measurement of the
Q2, t′ and xB-dependences, respectively, for the pro-
ton (deuteron) are listed. The values of the phase dif-
ference δ between T11 and T00 amplitudes, from proton
and deuteron data, are contained in Tab. 9. The kine-
matic dependences of the u1 value used for the study of
unnatural-parity-exchange amplitudes are in Tab. 10.
The SDMEs measured over the entire kinematic re-
gion from proton data, but presented using the recent
representation of Ref. [25] are listed in Tab. 14. The
correlation matrices of the 23 SDMEs measured for the
proton and deuteron over the entire kinematic region
are presented in Tabs. 15 and 16.
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Table 2. The definition of intervals and the mean values for kinematic variables for hydrogen (deuterium) data.

bin 〈Q2〉, GeV2

1 GeV2 < Q2 < 7 GeV2 1.95 (1.94)

0.5 GeV2 < Q2 < 1.0 GeV2 0.82 (0.82)

1.0 GeV2 < Q2 < 1.4 GeV2 1.19 (1.18)

1.4 GeV2 < Q2 < 2 GeV2 1.66 (1.66)

2 GeV2 < Q2 < 7 GeV2 3.06 (3.04)

〈t′〉, GeV2

0.0 GeV2 < −t′ < 0.04 GeV2 0.019 (0.018)

0.04 GeV2 < −t′ < 0.10 GeV2 0.068 (0.068)

0.10 GeV2 < −t′ < 0.20 GeV2 0.146 (0.145)

0.20 GeV2 < −t′ < 0.40 GeV2 0.281 (0.283)

〈xB〉
0.0 < xB < 0.05 0.042 (0.042)

0.05 < xB < 0.08 0.064 (0.064)

0.08 < xB < 0.35 0.120 (0.119)

1 GeV2 < Q2 < 7 GeV2 〈ǫ〉 = 0.80 ± 0.01

Table 3. The 23 unpolarized and polarized SDMEs for ρ0 production from the proton in Q2 bins defined by the limits
0.5, 1.0, 1.4, 2.0, and 7.0 GeV2. The first uncertainties are statistical, the second systematic.

Element 〈Q2〉 = 0.82 GeV2 〈Q2〉 = 1.19 GeV2 〈Q2〉 = 1.66 GeV2 〈Q2〉 = 3.06 GeV2

r04
00 0.349 ± 0.026 ± 0.061 0.368 ± 0.018 ± 0.011 0.397 ± 0.017 ± 0.018 0.454 ± 0.014 ± 0.011

r1
1−1 0.283 ± 0.023 ± 0.049 0.262 ± 0.018 ± 0.024 0.274 ± 0.019 ± 0.024 0.204 ± 0.017 ± 0.012

Im r2
1−1 −0.294 ± 0.019 ± 0.038 −0.255 ± 0.016 ± 0.022 −0.239 ± 0.017 ± 0.011 −0.197 ± 0.017 ± 0.012

Re r5
10 0.151 ± 0.028 ± 0.026 0.171 ± 0.007 ± 0.000 0.161 ± 0.006 ± 0.004 0.141 ± 0.006 ± 0.008

Im r6
10 −0.149 ± 0.015 ± 0.010 −0.167 ± 0.007 ± 0.003 −0.167 ± 0.006 ± 0.005 −0.156 ± 0.006 ± 0.010

Im r7
10 0.079 ± 0.068 ± 0.011 0.092 ± 0.038 ± 0.010 0.039 ± 0.036 ± 0.004 0.187 ± 0.034 ± 0.018

Re r8
10 0.040 ± 0.043 ± 0.011 0.020 ± 0.031 ± 0.008 0.074 ± 0.034 ± 0.002 0.098 ± 0.032 ± 0.005

Re r04
10 0.028 ± 0.028 ± 0.020 0.029 ± 0.007 ± 0.003 0.035 ± 0.007 ± 0.011 0.026 ± 0.007 ± 0.003

Re r1
10 −0.037 ± 0.044 ± 0.032 −0.043 ± 0.012 ± 0.006 −0.036 ± 0.012 ± 0.012 −0.009 ± 0.013 ± 0.010

Im r2
10 0.023 ± 0.019 ± 0.007 0.022 ± 0.012 ± 0.018 0.005 ± 0.012 ± 0.024 0.022 ± 0.013 ± 0.008

r5
00 0.121 ± 0.038 ± 0.039 0.094 ± 0.017 ± 0.017 0.057 ± 0.015 ± 0.019 0.151 ± 0.015 ± 0.007

r1
00 −0.054 ± 0.039 ± 0.013 0.011 ± 0.032 ± 0.018 0.007 ± 0.031 ± 0.009 0.037 ± 0.034 ± 0.002

Im r3
10 0.002 ± 0.041 ± 0.008 −0.041 ± 0.026 ± 0.005 −0.074 ± 0.025 ± 0.005 0.048 ± 0.024 ± 0.006

r8
00 0.022 ± 0.079 ± 0.026 0.040 ± 0.084 ± 0.014 0.054 ± 0.086 ± 0.011 0.010 ± 0.085 ± 0.016

r5
11 −0.015 ± 0.010 ± 0.007 −0.011 ± 0.006 ± 0.006 −0.008 ± 0.006 ± 0.011 −0.021 ± 0.006 ± 0.016

r5
1−1 0.009 ± 0.011 ± 0.019 0.008 ± 0.007 ± 0.006 −0.013 ± 0.007 ± 0.003 0.020 ± 0.007 ± 0.008

Im r6
1−1 −0.011 ± 0.010 ± 0.013 0.002 ± 0.007 ± 0.007 0.002 ± 0.007 ± 0.004 −0.010 ± 0.007 ± 0.007

Im r7
1−1 −0.003 ± 0.078 ± 0.021 0.023 ± 0.056 ± 0.013 −0.005 ± 0.055 ± 0.010 −0.109 ± 0.047 ± 0.004

r8
11 0.019 ± 0.053 ± 0.007 0.056 ± 0.045 ± 0.004 0.051 ± 0.044 ± 0.006 −0.002 ± 0.035 ± 0.005

r8
1−1 0.013 ± 0.062 ± 0.008 0.072 ± 0.053 ± 0.011 −0.018 ± 0.054 ± 0.004 0.004 ± 0.045 ± 0.014

r04
1−1 −0.024 ± 0.013 ± 0.021 −0.014 ± 0.010 ± 0.010 −0.019 ± 0.010 ± 0.003 0.001 ± 0.009 ± 0.007

r1
11 −0.039 ± 0.017 ± 0.018 −0.034 ± 0.013 ± 0.013 −0.023 ± 0.013 ± 0.008 −0.018 ± 0.012 ± 0.010

Im r3
1−1 0.021 ± 0.051 ± 0.010 0.000 ± 0.033 ± 0.004 −0.031 ± 0.032 ± 0.007 −0.026 ± 0.028 ± 0.005
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Table 4. The 23 unpolarized and polarized SDMEs for ρ0 production from the proton in −t′ bins defined by the limits
0.0, 0.04, 0.1, 0.2, and 0.4 GeV2. The first uncertainties are statistical, the second systematic.

Element 〈−t′〉 = 0.019 GeV2 〈−t′〉 = 0.068 GeV2 〈−t′〉 = 0.146 GeV2 〈−t′〉 = 0.281 GeV 2

r04
00 0.393 ± 0.018 ± 0.019 0.394 ± 0.018 ± 0.025 0.415 ± 0.019 ± 0.021 0.481 ± 0.019 ± 0.028

r1
1−1 0.235 ± 0.021 ± 0.014 0.265 ± 0.021 ± 0.012 0.260 ± 0.020 ± 0.031 0.203 ± 0.020 ± 0.030

Im r2
1−1 −0.204 ± 0.020 ± 0.008 −0.243 ± 0.019 ± 0.011 −0.232 ± 0.019 ± 0.041 −0.231 ± 0.019 ± 0.021

Re r5
10 0.156 ± 0.007 ± 0.005 0.156 ± 0.007 ± 0.010 0.153 ± 0.007 ± 0.007 0.153 ± 0.008 ± 0.009

Im r6
10 −0.162 ± 0.007 ± 0.005 −0.170 ± 0.007 ± 0.010 −0.155 ± 0.007 ± 0.006 −0.153 ± 0.008 ± 0.008

Im r7
10 0.103 ± 0.040 ± 0.007 0.112 ± 0.040 ± 0.007 0.081 ± 0.042 ± 0.011 0.163 ± 0.047 ± 0.033

Re r8
10 0.042 ± 0.037 ± 0.011 0.059 ± 0.037 ± 0.006 0.100 ± 0.036 ± 0.013 0.114 ± 0.039 ± 0.015

Re r04
10 0.018 ± 0.008 ± 0.004 0.027 ± 0.008 ± 0.011 0.035 ± 0.008 ± 0.007 0.038 ± 0.008 ± 0.003

Re r1
10 −0.009 ± 0.014 ± 0.005 −0.045 ± 0.014 ± 0.024 −0.013 ± 0.015 ± 0.009 −0.046 ± 0.016 ± 0.015

Im r2
10 −0.001 ± 0.014 ± 0.011 0.030 ± 0.014 ± 0.019 0.015 ± 0.013 ± 0.019 0.030 ± 0.015 ± 0.013

r5
00 0.039 ± 0.016 ± 0.001 0.068 ± 0.016 ± 0.030 0.136 ± 0.018 ± 0.010 0.219 ± 0.020 ± 0.022

r1
00 0.019 ± 0.035 ± 0.020 0.015 ± 0.035 ± 0.027 −0.026 ± 0.036 ± 0.021 −0.005 ± 0.041 ± 0.013

Im r3
10 −0.035 ± 0.028 ± 0.001 −0.044 ± 0.027 ± 0.004 0.018 ± 0.029 ± 0.007 0.009 ± 0.032 ± 0.025

r8
00 −0.013 ± 0.103 ± 0.011 0.128 ± 0.097 ± 0.012 −0.028 ± 0.095 ± 0.028 0.066 ± 0.097 ± 0.012

r5
11 −0.009 ± 0.007 ± 0.004 −0.011 ± 0.006 ± 0.009 −0.009 ± 0.007 ± 0.011 −0.031 ± 0.006 ± 0.024

r5
1−1 −0.009 ± 0.008 ± 0.003 0.005 ± 0.008 ± 0.004 0.003 ± 0.008 ± 0.008 0.012 ± 0.008 ± 0.008

Im r6
1−1 0.010 ± 0.008 ± 0.002 −0.010 ± 0.008 ± 0.008 0.006 ± 0.008 ± 0.003 −0.009 ± 0.008 ± 0.002

Im r7
1−1 −0.034 ± 0.064 ± 0.011 −0.040 ± 0.060 ± 0.004 −0.076 ± 0.060 ± 0.015 −0.005 ± 0.058 ± 0.008

r8
11 0.018 ± 0.050 ± 0.003 −0.010 ± 0.048 ± 0.009 0.061 ± 0.045 ± 0.006 0.068 ± 0.042 ± 0.006

r8
1−1 0.021 ± 0.062 ± 0.005 0.024 ± 0.058 ± 0.009 −0.019 ± 0.055 ± 0.007 0.051 ± 0.053 ± 0.006

r04
1−1 0.008 ± 0.011 ± 0.003 0.008 ± 0.011 ± 0.010 −0.033 ± 0.011 ± 0.008 −0.029 ± 0.010 ± 0.003

r1
11 −0.022 ± 0.015 ± 0.016 0.002 ± 0.015 ± 0.009 −0.036 ± 0.014 ± 0.003 −0.034 ± 0.014 ± 0.012

Im r3
1−1 −0.038 ± 0.036 ± 0.008 −0.015 ± 0.035 ± 0.001 −0.014 ± 0.036 ± 0.006 −0.036 ± 0.036 ± 0.010
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Table 5. The 23 unpolarized and polarized SDMEs for ρ0 production from the proton in xB bins defined by the limits
0.0, 0.05, 0.08, and 0.35. The first uncertainties are statistical, the second systematic.

Element 〈xB〉 =0.042 〈xB〉=0.064 〈xB〉=0.120

r04
00 0.349 ± 0.044 ± 0.031 0.405 ± 0.017 ± 0.013 0.448 ± 0.014 ± 0.012

r1
1−1 0.297 ± 0.036 ± 0.006 0.253 ± 0.014 ± 0.023 0.216 ± 0.015 ± 0.019

Im r2
1−1 −0.308 ± 0.032 ± 0.024 −0.229 ± 0.031 ± 0.008 −0.198 ± 0.014 ± 0.015

Re r5
10 0.151 ± 0.027 ± 0.014 0.176 ± 0.008 ± 0.007 0.146 ± 0.006 ± 0.012

Im r6
10 −0.172 ± 0.015 ± 0.006 −0.169 ± 0.005 ± 0.003 −0.157 ± 0.006 ± 0.012

Im r7
10 0.132 ± 0.067 ± 0.015 0.045 ± 0.061 ± 0.016 0.160 ± 0.032 ± 0.018

Re r8
10 0.021 ± 0.041 ± 0.002 0.067 ± 0.042 ± 0.000 0.092 ± 0.032 ± 0.011

Re r04
10 0.023 ± 0.021 ± 0.005 0.038 ± 0.017 ± 0.010 0.033 ± 0.006 ± 0.005

Re r1
10 −0.013 ± 0.035 ± 0.014 −0.050 ± 0.011 ± 0.010 −0.021 ± 0.011 ± 0.019

Im r2
10 0.035 ± 0.021 ± 0.017 0.009 ± 0.022 ± 0.015 0.027 ± 0.011 ± 0.017

r5
00 0.079 ± 0.051 ± 0.034 0.056 ± 0.013 ± 0.017 0.130 ± 0.013 ± 0.014

r1
00 0.044 ± 0.064 ± 0.016 0.000 ± 0.029 ± 0.005 0.067 ± 0.030 ± 0.007

Im r3
10 −0.025 ± 0.042 ± 0.001 −0.067 ± 0.033 ± 0.001 0.014 ± 0.022 ± 0.005

r8
00 0.100 ± 0.092 ± 0.011 0.030 ± 0.074 ± 0.003 −0.005 ± 0.090 ± 0.031

r5
11 0.005 ± 0.022 ± 0.011 −0.014 ± 0.011 ± 0.005 −0.019 ± 0.004 ± 0.016

r5
1−1 −0.014 ± 0.020 ± 0.002 0.017 ± 0.007 ± 0.004 0.000 ± 0.006 ± 0.005

Im r6
1−1 0.000 ± 0.017 ± 0.003 0.003 ± 0.014 ± 0.007 −0.001 ± 0.006 ± 0.007

Im r7
1−1 0.019 ± 0.099 ± 0.012 0.071 ± 0.135 ± 0.019 −0.142 ± 0.044 ± 0.010

r8
11 0.042 ± 0.060 ± 0.007 0.081 ± 0.079 ± 0.008 −0.002 ± 0.033 ± 0.009

r8
1−1 0.089 ± 0.065 ± 0.003 0.031 ± 0.077 ± 0.003 0.005 ± 0.043 ± 0.009

r04
1−1 −0.025 ± 0.020 ± 0.007 −0.001 ± 0.012 ± 0.010 −0.016 ± 0.008 ± 0.003

r1
11 −0.067 ± 0.030 ± 0.008 −0.018 ± 0.014 ± 0.011 −0.032 ± 0.010 ± 0.009

Im r3
1−1 −0.020 ± 0.067 ± 0.014 −0.017 ± 0.061 ± 0.009 −0.001 ± 0.026 ± 0.004
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Table 6. The 23 unpolarized and polarized SDMEs for ρ0 production from the deuteron in Q2 bins defined by the
limits 0.5, 1.0, 1.4, 2.0, and 7.0 GeV2. The first uncertainties are statistical, the second systematic.

SDME 〈Q2〉 = 0.82 GeV2 〈Q2〉 = 1.18 GeV2 〈Q2〉 = 1.66 GeV2 〈Q2〉 = 3.04 GeV2

r04
00 0.365 ± 0.015 ± 0.058 0.386 ± 0.017 ± 0.010 0.445 ± 0.012 ± 0.022 0.407 ± 0.011 ± 0.013

r1
1−1 0.294 ± 0.013 ± 0.060 0.278 ± 0.016 ± 0.022 0.235 ± 0.013 ± 0.012 0.216 ± 0.014 ± 0.008

Im r2
1−1 −0.287 ± 0.014 ± 0.047 −0.267 ± 0.013 ± 0.034 −0.194 ± 0.014 ± 0.020 −0.219 ± 0.014 ± 0.017

Re r5
10 0.159 ± 0.008 ± 0.025 0.173 ± 0.005 ± 0.002 0.160 ± 0.005 ± 0.006 0.154 ± 0.005 ± 0.005

Im r6
10 −0.159 ± 0.008 ± 0.015 −0.165 ± 0.005 ± 0.001 −0.155 ± 0.005 ± 0.003 −0.139 ± 0.005 ± 0.007

Im r7
10 0.070 ± 0.042 ± 0.004 0.080 ± 0.028 ± 0.011 0.102 ± 0.030 ± 0.004 0.125 ± 0.026 ± 0.007

Re r8
10 0.080 ± 0.028 ± 0.012 0.080 ± 0.023 ± 0.003 0.132 ± 0.026 ± 0.006 0.117 ± 0.024 ± 0.012

Re r04
10 0.021 ± 0.007 ± 0.019 0.036 ± 0.006 ± 0.004 0.026 ± 0.006 ± 0.016 0.023 ± 0.005 ± 0.006

Re r1
10 −0.025 ± 0.011 ± 0.031 −0.017 ± 0.009 ± 0.002 −0.014 ± 0.010 ± 0.015 −0.031 ± 0.010 ± 0.013

Im r2
10 −0.006 ± 0.011 ± 0.017 0.016 ± 0.009 ± 0.018 0.015 ± 0.010 ± 0.038 0.004 ± 0.010 ± 0.018

r5
00 0.097 ± 0.017 ± 0.035 0.088 ± 0.013 ± 0.011 0.113 ± 0.012 ± 0.018 0.119 ± 0.012 ± 0.006

r1
00 0.019 ± 0.028 ± 0.014 −0.018 ± 0.024 ± 0.019 −0.031 ± 0.025 ± 0.020 −0.036 ± 0.026 ± 0.009

Im r3
10 0.005 ± 0.029 ± 0.004 0.003 ± 0.019 ± 0.008 0.024 ± 0.021 ± 0.003 0.062 ± 0.018 ± 0.003

r8
00 0.138 ± 0.061 ± 0.010 0.221 ± 0.066 ± 0.021 0.058 ± 0.069 ± 0.016 −0.098 ± 0.063 ± 0.007

r5
11 −0.009 ± 0.006 ± 0.005 −0.013 ± 0.004 ± 0.009 −0.017 ± 0.004 ± 0.013 −0.027 ± 0.004 ± 0.015

r5
1−1 0.008 ± 0.007 ± 0.016 0.009 ± 0.005 ± 0.002 0.006 ± 0.006 ± 0.004 0.021 ± 0.006 ± 0.011

Im r6
1−1 −0.007 ± 0.007 ± 0.018 −0.003 ± 0.005 ± 0.004 −0.003 ± 0.006 ± 0.006 −0.013 ± 0.006 ± 0.005

Im r7
1−1 −0.066 ± 0.052 ± 0.008 −0.040 ± 0.040 ± 0.016 −0.026 ± 0.044 ± 0.001 −0.100 ± 0.037 ± 0.013

r8
11 0.007 ± 0.039 ± 0.003 −0.011 ± 0.035 ± 0.010 0.047 ± 0.033 ± 0.008 0.037 ± 0.028 ± 0.001

r8
1−1 −0.015 ± 0.047 ± 0.014 −0.055 ± 0.040 ± 0.015 −0.083 ± 0.041 ± 0.003 −0.072 ± 0.036 ± 0.017

r04
1−1 0.000 ± 0.009 ± 0.021 0.003 ± 0.008 ± 0.012 −0.006 ± 0.008 ± 0.009 −0.008 ± 0.007 ± 0.003

r1
11 −0.029 ± 0.012 ± 0.019 −0.002 ± 0.009 ± 0.013 −0.003 ± 0.010 ± 0.011 −0.012 ± 0.010 ± 0.007

Im r3
1−1 0.006 ± 0.031 ± 0.010 −0.017 ± 0.024 ± 0.008 −0.023 ± 0.026 ± 0.003 0.029 ± 0.022 ± 0.004
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Table 7. The 23 unpolarized and polarized SDMEs for ρ0 production from the deuteron in −t′ bins defined by the
limits 0.0, 0.04, 0.1, 0.2, and 0.4 GeV2. The first uncertainties are statistical, the second systematic.

Element 〈−t′〉 = 0.018 GeV2 〈−t′〉 = 0.068 GeV2 〈−t′〉 = 0.145 GeV2 〈−t′〉 = 0.283 GeV2

r04
00 0.440 ± 0.014 ± 0.017 0.396 ± 0.015 ± 0.024 0.389 ± 0.015 ± 0.017 0.434 ± 0.017 ± 0.032

r1
1−1 0.225 ± 0.015 ± 0.014 0.261 ± 0.017 ± 0.011 0.272 ± 0.016 ± 0.029 0.247 ± 0.018 ± 0.029

Im r2
1−1 −0.208 ± 0.014 ± 0.015 −0.258 ± 0.015 ± 0.019 −0.239 ± 0.015 ± 0.028 −0.229 ± 0.016 ± 0.026

Re r5
10 0.155 ± 0.005 ± 0.006 0.153 ± 0.006 ± 0.010 0.172 ± 0.006 ± 0.009 0.154 ± 0.007 ± 0.009

Im r6
10 −0.154 ± 0.005 ± 0.003 −0.150 ± 0.005 ± 0.004 −0.150 ± 0.006 ± 0.006 −0.154 ± 0.007 ± 0.010

Im r7
10 0.084 ± 0.029 ± 0.006 0.122 ± 0.028 ± 0.008 0.108 ± 0.034 ± 0.007 0.086 ± 0.039 ± 0.015

Re r8
10 0.161 ± 0.026 ± 0.010 0.095 ± 0.028 ± 0.007 0.081 ± 0.027 ± 0.006 0.099 ± 0.030 ± 0.012

Re r04
10 0.016 ± 0.006 ± 0.005 0.025 ± 0.006 ± 0.011 0.034 ± 0.006 ± 0.005 0.046 ± 0.007 ± 0.005

Re r1
10 −0.010 ± 0.010 ± 0.005 −0.002 ± 0.011 ± 0.021 −0.020 ± 0.011 ± 0.010 −0.047 ± 0.013 ± 0.018

Im r2
10 0.012 ± 0.010 ± 0.010 0.018 ± 0.010 ± 0.018 0.005 ± 0.011 ± 0.018 0.036 ± 0.013 ± 0.017

r5
00 0.053 ± 0.012 ± 0.003 0.085 ± 0.013 ± 0.033 0.108 ± 0.014 ± 0.003 0.215 ± 0.018 ± 0.032

r1
00 −0.077 ± 0.026 ± 0.025 −0.001 ± 0.028 ± 0.034 −0.053 ± 0.029 ± 0.028 −0.040 ± 0.035 ± 0.030

Im r3
10 0.020 ± 0.020 ± 0.003 0.043 ± 0.020 ± 0.003 0.022 ± 0.023 ± 0.004 0.033 ± 0.027 ± 0.006

r8
00 0.157 ± 0.073 ± 0.013 0.111 ± 0.076 ± 0.011 −0.147 ± 0.070 ± 0.013 0.078 ± 0.079 ± 0.012

r5
11 −0.018 ± 0.005 ± 0.007 −0.014 ± 0.005 ± 0.009 −0.012 ± 0.005 ± 0.005 −0.025 ± 0.006 ± 0.023

r5
1−1 0.001 ± 0.006 ± 0.003 0.007 ± 0.006 ± 0.004 0.006 ± 0.006 ± 0.007 0.017 ± 0.007 ± 0.008

Im r6
1−1 −0.007 ± 0.006 ± 0.002 −0.005 ± 0.006 ± 0.005 0.001 ± 0.006 ± 0.009 −0.003 ± 0.007 ± 0.002

Im r7
1−1 −0.037 ± 0.043 ± 0.006 −0.041 ± 0.045 ± 0.004 −0.060 ± 0.046 ± 0.002 −0.080 ± 0.048 ± 0.008

r8
11 −0.030 ± 0.036 ± 0.002 −0.003 ± 0.037 ± 0.004 0.078 ± 0.035 ± 0.001 0.056 ± 0.037 ± 0.008

r8
1−1 −0.095 ± 0.044 ± 0.010 −0.055 ± 0.044 ± 0.008 −0.030 ± 0.044 ± 0.008 −0.091 ± 0.045 ± 0.006

r04
1−1 0.016 ± 0.008 ± 0.004 −0.005 ± 0.009 ± 0.006 −0.021 ± 0.009 ± 0.001 −0.013 ± 0.009 ± 0.008

r1
11 0.026 ± 0.011 ± 0.013 −0.004 ± 0.012 ± 0.015 −0.036 ± 0.012 ± 0.004 −0.016 ± 0.012 ± 0.011

Im r3
1−1 0.003 ± 0.025 ± 0.002 −0.036 ± 0.026 ± 0.005 −0.033 ± 0.028 ± 0.002 0.052 ± 0.031 ± 0.005
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Table 8. The 23 unpolarized and polarized SDMEs for ρ0 production from the deuteron in xB bins defined by the
limits 0.0, 0.05, 0.08, and 0.35. The first uncertainties are statistical, the second systematic.

Element 〈xB〉=0.042 〈xB〉=0.064 〈xB〉=0.119

r04
00 0.410 ± 0.017 ± 0.032 0.413 ± 0.012 ± 0.014 0.411 ± 0.011 ± 0.010

r1
1−1 0.233 ± 0.019 ± 0.018 0.263 ± 0.013 ± 0.022 0.223 ± 0.011 ± 0.012

Im r2
1−1 −0.226 ± 0.020 ± 0.039 −0.234 ± 0.011 ± 0.019 −0.218 ± 0.012 ± 0.018

Re r5
10 0.162 ± 0.005 ± 0.021 0.168 ± 0.005 ± 0.007 0.148 ± 0.004 ± 0.011

Im r6
10 −0.162 ± 0.003 ± 0.017 −0.160 ± 0.004 ± 0.004 −0.132 ± 0.005 ± 0.009

Im r7
10 0.102 ± 0.038 ± 0.028 0.106 ± 0.026 ± 0.006 0.099 ± 0.025 ± 0.005

Re r8
10 0.080 ± 0.017 ± 0.018 0.080 ± 0.020 ± 0.005 0.145 ± 0.024 ± 0.018

Re r04
10 0.044 ± 0.005 ± 0.009 0.027 ± 0.005 ± 0.012 0.026 ± 0.005 ± 0.005

Re r1
10 −0.017 ± 0.013 ± 0.027 −0.016 ± 0.010 ± 0.009 −0.025 ± 0.009 ± 0.018

Im r2
10 0.013 ± 0.008 ± 0.031 0.024 ± 0.009 ± 0.019 0.011 ± 0.010 ± 0.017

r5
00 0.138 ± 0.014 ± 0.043 0.075 ± 0.011 ± 0.014 0.120 ± 0.010 ± 0.014

r1
00 −0.010 ± 0.023 ± 0.061 −0.056 ± 0.022 ± 0.011 −0.019 ± 0.024 ± 0.009

Im r3
10 0.048 ± 0.026 ± 0.020 0.010 ± 0.018 ± 0.005 0.040 ± 0.017 ± 0.002

r8
00 0.199 ± 0.043 ± 0.024 0.074 ± 0.058 ± 0.005 −0.059 ± 0.062 ± 0.016

r5
11 0.010 ± 0.007 ± 0.021 −0.006 ± 0.004 ± 0.005 −0.030 ± 0.004 ± 0.015

r5
1−1 0.018 ± 0.009 ± 0.011 0.000 ± 0.005 ± 0.002 0.020 ± 0.004 ± 0.007

Im r6
1−1 −0.010 ± 0.011 ± 0.002 0.001 ± 0.005 ± 0.008 −0.012 ± 0.005 ± 0.005

Im r7
1−1 −0.081 ± 0.033 ± 0.032 −0.028 ± 0.037 ± 0.003 −0.081 ± 0.036 ± 0.010

r8
11 −0.028 ± 0.026 ± 0.007 0.020 ± 0.029 ± 0.001 0.049 ± 0.026 ± 0.004

r8
1−1 −0.116 ± 0.042 ± 0.028 −0.046 ± 0.035 ± 0.004 −0.073 ± 0.034 ± 0.017

r04
1−1 0.004 ± 0.008 ± 0.020 −0.003 ± 0.007 ± 0.012 −0.007 ± 0.006 ± 0.002

r1
11 −0.023 ± 0.016 ± 0.020 −0.007 ± 0.009 ± 0.011 −0.010 ± 0.009 ± 0.010

Im r3
1−1 −0.001 ± 0.013 ± 0.019 −0.032 ± 0.022 ± 0.004 0.027 ± 0.019 ± 0.004

Table 9. The values of the phase difference δ between T11 and T00 amplitudes calculated according to (50) for the proton
and deuteron in Q2 bins defined by the limits 0.5, 1.0, 1.4, 2.0, and 7.0 GeV2. The first uncertainties are statistical, the
second systematic.

target 〈Q2〉 = 0.82 GeV2 〈Q2〉 = 1.19 GeV2 〈Q2〉 = 1.66 GeV2 〈Q2〉 = 3.06 GeV2

proton 36.17 ± 12.33 ± 7.09 18.76 ± 6.99 ± 5.62 26.52 ± 3.92 ± 0.91 36.53 ± 2.79 ± 3.65

deuteron 33.18 ± 4.55 ± 9.88 22.55 ± 4.07 ± 2.83 30.37 ± 3.13 ± 0.54 36.58 ± 2.28 ± 3.99

Table 10. Values in different kinematic bins of the variable u1 = 1 − r04
00 + 2r04

1−1 − 2r1
11 − 2r1

1−1, used for the test of
NPE dominance, for proton and deuteron data. The first uncertainties are statistical, the second systematic.

bin u1 proton u1 deuteron

0.5 GeV2 < Q2 < 1 GeV2 0.114 ± 0.053 ± 0.045 0.104 ± 0.035 ± 0.061

1.0 GeV2 < Q2 < 1.4 GeV2 0.148 ± 0.035 ± 0.044 0.069 ± 0.026 ± 0.048

1.4 GeV2 < Q2 < 2.0 GeV2 0.063 ± 0.037 ± 0.077 0.078 ± 0.028 ± 0.028

2.0 GeV2 < Q2 < 7 GeV2 0.178 ± 0.038 ± 0.040 0.169 ± 0.032 ± 0.024

0.0 GeV2 < −t′ < 0.04 GeV2 0.197 ± 0.043 ± 0.035 0.091 ± 0.029 ± 0.024

0.04 GeV2 < −t′ < 0.10 GeV2 0.090 ± 0.040 ± 0.041 0.082 ± 0.032 ± 0.039

0.10 GeV2 < −t′ < 0.20 GeV2 0.073 ± 0.041 ± 0.078 0.097 ± 0.033 ± 0.068

0.20 GeV2 < −t′ < 0.40 GeV2 0.125 ± 0.040 ± 0.107 0.077 ± 0.036 ± 0.095

0.0 < xB < 0.05 0.142 ± 0.099 ± 0.005 0.180 ± 0.063 ± 0.075

0.05 < xB < 0.08 0.123 ± 0.037 ± 0.029 0.070 ± 0.027 ± 0.031

0.08 < xB < 0.35 0.152 ± 0.031 ± 0.055 0.149 ± 0.027 ± 0.039
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Table 11. Results on u1, u2 and u3, calculated according to (52-54), shown together with average value or range in Q2

and W . Top section: HERMES results from proton and deuteron data, shown with statistical and systematic uncertainties
separately. Bottom section: results from other experiments calculated from published SDMEs, with statistical and
systematic uncertainties combined in quadrature without accounting for correlations between the SDMEs.

Experiment Q2, GeV2 W, GeV u1 u2 u3

HERMES p 1.95 4.8 0.125 ± 0.021 ± 0.050 −0.011± 0.004 ± 0.012 0.055 ± 0.045 ± 0.006

HERMES d 1.94 4.8 0.091 ± 0.016 ± 0.046 −0.008± 0.003 ± 0.010 −0.040± 0.035 ± 0.007

ZEUS DIS [10] 2.4 90 0.018 ± 0.066 0.018 ± 0.011

ZEUS BPC [9] 0.41 45 0.058 ± 0.078 −0.002± 0.016

H1 [11] 2.5–3.5 30–100 0.065 ± 0.15 −0.017± 0.034

SLAC [55] 0.9 3.14 0.85 ± 0.32 −0.050± 0.072

SLAC [56] 0.9 3.14 1.174 ± 0.379 0.039 ± 0.082

DESY [37] 1.05 2 – 2.8 0.73 ± 0.33 −0.040± 0.064

Table 12. Ratios of certain helicity-flip amplitudes to the square root of the sum of all amplitudes squared: τ01

for the transition γ∗

T → ρ0
L, τ10 for the transition γ∗

L → ρ0
T , and τ1−1 for the transition γ∗

−T → ρ0
T . Top section:

HERMES results from proton and deuteron data calculated according to (59-61), shown with statistical and systematic
uncertainties separately. Bottom section: results from other experiments calculated according to (62-64), with statistical
and systematic uncertainties combined in quadrature without accounting for correlations between the SDMEs.

HERMES τ01 τ10 τ1−1

proton 0.114 ± 0.007 ± 0.010 0.075 ± 0.030 ± 0.003 0.051 ± 0.029 ± 0.010

deuteron 0.122 ± 0.007 ± 0.006 0.090 ± 0.022 ± 0.011 0.007 ± 0.025 ± 0.015

Experiment eτ01 eτ10 eτ1−1

ZEUS BPC[9] 0.069 ± 0.027 0.003 ± 0.029 0.048 ± 0.028

ZEUS DIS[10] 0.078 ± 0.016 −0.010± 0.028 0.013 ± 0.032

H1 [11] 0.088 ± 0.036 0.019 ± 0.065 0.035 ± 0.109

SLAC [55] 0.095 ± 0.165 0.030 ± 0.133 0.112 ± 0.231

SLAC [56] 0.084 ± 0.177 0.412 ± 0.430 0.042 ± 0.389

DESY [37] 0.041 ± 0.247 0.335 ± 0.436

Table 13. The longitudinal-to-transverse cross section ratios R04, R, and RNPE for the proton and deuteron in Q2

bins defined by the limits 0.5, 1.0, 1.4, 2.0, and 7.0 GeV2. The total uncertainties are shown.

Ratio Target 〈Q2〉 = 0.82 GeV2 〈Q2〉 = 1.19 GeV2 〈Q2〉 = 1.66 GeV2 〈Q2〉 = 3.06 GeV2

R04 proton 0.694 ± 0.187 0.701 ± 0.063 0.798 ± 0.080 1.053 ± 0.074

deuteron 0.748 ± 0.179 0.755 ± 0.063 0.973 ± 0.098 0.870 ± 0.061

R proton 0.649 ± 0.188 0.671 ± 0.065 0.794 ± 0.083 1.068 ± 0.087

deuteron 0.677 ± 0.180 0.583 ± 0.067 0.958 ± 0.102 0.922 ± 0.074

RNPE proton 0.755 ± 0.190 0.783 ± 0.068 0.840 ± 0.090 1.225 ± 0.084

deuteron 0.809 ± 0.182 0.798 ± 0.067 1.041 ± 0.102 0.994 ± 0.065
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Table 14. The SDME results from the proton data, integrated over the entire HERMES kinematic range, presented
in the notation of Ref. [25]. The first uncertainties are statistical and the second systematic.

u00
++ + ǫu00

00 = r04
00 0.412 ± 0.010 ± 0.010

Re (u0+

0+ − u−0

0+) =
√

2(Im r6
10 − r5

10) −0.464 ± 0.005 ± 0.028

u++

++ + u−−

++ + 2ǫu++

00 = 1 − r04
00 0.588 ± 0.010 ± 0.010

u−+

−+ = r1
1−1 − Im r2

1−1 0.473 ± 0.012 ± 0.029

Re u00
0+ = −r5

00/
√

2 −0.077 ± 0.006 ± 0.006

u0+

++ − u−0

++ + 2ǫu0+

00 = 2Re r04
10 0.062 ± 0.008 ± 0.016

Re u0+

−+ = Re r1
10 − Im r2

10 −0.054 ± 0.009 ± 0.027

Re (u0−

0+ − u+0

0+) =
√

2(Im r6
10 + Re r5

10) −0.008 ± 0.005 ± 0.015

Re (u−+

++ + ǫu−+

00 ) = r04
1−1 −0.011 ± 0.005 ± 0.005

Re u++

−+ = r1
11 −0.025 ± 0.007 ± 0.008

Re (u++

0+ + u−−

0+ ) = −
√

2r5
11 −0.023 ± 0.004 ± 0.018

Re u−+

0+ = (Im r6
1−1 − r5

1−1)/
√

2 −0.005 ± 0.005 ± 0.008

u00
−+ = r1

00 0.011 ± 0.019 ± 0.008

Re u+0

−+ = Re r1
10 + Im r2

10 0.009 ± 0.009 ± 0.004

Re u+−

0+ = −(Im r6
1−1 + r5

1−1)/
√

2 −0.002 ± 0.005 ± 0.001

Re u+−

−+ = r1
1−1 + Im r2

1−1 0.018 ± 0.012 ± 0.011

Im (u0+

0+ − u−0

0+) = Im r7
10 + Re r8

10 0.264 ± 0.030 ± 0.023

Im u00
0+ = r8

00/
√

2 0.025 ± 0.035 ± 0.007

Im (u0+

++ − u−0

=+) = −2Im r3
10 0.034 ± 0.030 ± 0.008

Im (u0−

0+ − u+0

0+) =
√

2(Im r7
10 − Re r8

10) 0.054 ± 0.035 ± 0.008

Im u−+

++ = −Im r3
1−1 0.024 ± 0.018 ± 0.001

Im (u++

0+ + u−−

0+ ) =
√

2r8
11 0.51 ± 0.034 ± 0.001

u−+

0+ = (r8
1−1 + Im r7

1−1)/
√

2 −0.012 ± 0.039 ± 0.007

u+−

0+ = (r8
1−1 − Im r7

1−1)/
√

2 0.038 ± 0.039 ± 0.001
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SDME r04
00 r04

10 r04
1−1 r1

11 r1
00 r1

10 r1
1−1 r2

10 r2
1−1 r5

11 r5
00 r5

10 r5
1−1 r6

10 r6
1−1 r3

10 r3
1−1 r7

10 r7
1−1 r8

11 r8
00 r8

10 r8
1−1

r04
00 1.00

Re r04
10 0.16 1.00

r04
1−1 -0.05 -0.01 1.00

r1
11 -0.04 -0.01 0.62 1.00

r1
00 -0.02 0.12 -0.18 -0.48 1.00

Re r1
10 0.00 -0.41 -0.08 -0.03 0.02 1.00

r1
1−1 -0.65 -0.22 -0.05 0.00 0.00 0.02 1.00

Im r2
10 0.02 0.33 -0.03 -0.03 0.07 -0.17 -0.10 1.00

Im r2
1−1 0.54 0.23 0.00 -0.03 0.01 -0.11 -0.32 0.07 1.00

r5
11 -0.17 0.15 0.02 -0.04 0.09 -0.03 0.10 0.07 -0.07 1.00

r5
00 0.37 0.01 0.06 0.09 -0.26 0.02 -0.27 0.00 0.20 -0.50 1.00

Re r5
10 -0.10 0.08 -0.13 -0.12 0.06 -0.18 -0.03 0.08 0.04 -0.01 -0.12 1.00

r5
1−1 -0.05 -0.15 0.10 0.10 -0.09 0.01 0.04 0.02 -0.08 -0.43 0.08 -0.04 1.00

Im r6
10 0.15 -0.02 -0.08 -0.05 -0.06 0.20 -0.01 -0.21 0.00 -0.05 0.19 -0.34 0.04 1.00

Im r6
1−1 0.04 0.16 -0.07 -0.13 0.02 0.06 -0.09 0.06 0.05 0.46 -0.09 -0.05 -0.27 -0.04 1.00

Im r3
10 0.07 0.00 0.03 0.00 -0.05 0.04 -0.05 -0.03 0.01 -0.02 0.06 -0.05 0.02 0.07 0.00 1.00

Im r3
1−1 0.00 0.03 0.02 0.00 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.06 0.00 0.01 0.04 -0.02 1.00

Im r7
10 0.08 0.06 0.07 0.00 -0.09 -0.02 -0.12 0.03 0.04 -0.02 0.00 -0.08 -0.03 0.08 0.00 0.51 -0.11 1.00
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SDME r04
00 r04

10 r04
1−1 r1

11 r1
00 r1
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00 r5
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1−1 r6

10 r6
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00 r8
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r04
00 1.00

Re r04
10 0.12 1.00

r04
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r1
11 -0.05 0.00 0.61 1.00

r1
00 -0.03 0.10 -0.16 -0.48 1.00

Re r1
10 0.04 -0.39 -0.10 -0.02 0.05 1.00

r1
1−1 -0.60 -0.18 0.03 0.04 0.02 -0.04 1.00

Im r2
10 -0.01 0.32 -0.04 -0.02 0.04 -0.14 -0.06 1.00

Im r2
1−1 0.52 0.19 -0.04 -0.03 -0.03 -0.06 -0.27 0.04 1.00

r5
11 -0.17 0.15 0.04 -0.05 0.12 -0.02 0.12 0.07 -0.05 1.00

r5
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Re r5
10 -0.12 0.06 -0.15 -0.11 0.00 -0.20 -0.02 0.04 0.01 0.02 -0.14 1.00

r5
1−1 -0.06 -0.17 0.08 0.08 -0.09 0.01 0.00 -0.01 -0.08 -0.42 0.08 -0.04 1.00

Im r6
10 0.17 0.00 -0.04 -0.03 0.00 0.19 -0.03 -0.19 0.02 -0.05 0.18 -0.36 0.05 1.00

Im r6
1−1 0.02 0.15 -0.06 -0.09 0.01 0.04 -0.08 0.08 0.11 0.45 -0.09 -0.02 -0.24 -0.07 1.00

Im r3
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